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ABSTRACT 

Mutations in homologous recombination (HR) genes increase genomic instability, an 

enabling characteristic of cancer. However, the status of these same genes can also 

determine chemotherapy outcomes. RAD51D is a breast and ovarian cancer susceptibility 

gene that is an important component of HR. Mammalian cells defective for RAD51D 

have extensive chromosomal aberrations and are more sensitive to the interstrand 

crosslink-inducing agent mitomycin C (MMC) and the thiopurine 6-thioguanine (6TG). 

Previously, the RNF138 E3 ubiquitin ligase was identified to promote RAD51D 

ubiquitination, and loss of RNF138 also increased cellular sensitivity to MMC. 

Ubiquitination assays were used to show that a 3-ubiquitin modification occurs along the 

RAD51D wild-type protein. To identify potential sites of ubiquitination, amino acid 

substitutions were generated at all thirteen lysine residues along RAD51D. Arginine 

substitutions at K235 (K235R) and K298 (K298R) were found to confer cellular 

sensitivity to MMC. In addition, protein stability of K235R and K298R were 2 to 3-fold 

higher as compared with wild-type RAD51D.  

RAD51D is also known to contribute to telomere maintenance, although its 

precise function at the telomeres remains unclear. In this dissertation, I investigated the 

activity of RAD51D at telomeres and the contribution of RAD51D to protect against 

6TG-induced telomere damage. As measured by γ-H2AX induction and foci formation, 

the extent of γ-H2AX telomere localization following 6TG treatment was higher in 

Rad51d-deficient cells than in Rad51d-proficient cells. In the final portion of this 
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dissertation, Rad51d-deficient cells were used as a model for genome unstable 

mammalian cells to identify genetic compromises that support cell proliferation. Gene 

expression profiles of Rad51d-proficient and -deficient primary mouse embryonic 

fibroblasts were analyzed by microarray and RNA Seq. In both analyses, the highest 

proportion of genes were associated with cellular growth and proliferation. In summary, 

the data presented in this dissertation identified potential regulatory sites along RAD51D 

that mediate its function during ICL repair, elucidated the role of RAD51D in 

maintaining telomere integrity in the presence of thiopurine-induced DNA damage, and 

revealed genetic compromises in Rad51d-deficient cells that promote cell proliferation. 
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CHAPTER 1 

INTRODUCTION 

Six identifiable biological characteristics of tumor development termed the “hallmarks of 

cancer” were classified by Hanahan and Weinberg (Hanahan and Weinberg 2000). In 

addition to these features, cancer cells acquire ‘enabling characteristics’ that contribute to 

carcinogenesis. In 2011, ‘genome instability’ was recognized as an enabling 

characteristic, and Hanahan and Weinberg argued that tumor growth can often be 

attributed to acquisition of mutations that promote cell proliferation and inhibit cell death 

(Hanahan and Weinberg 2011). The idea that genome instability contributes to cancer 

development was actually first proposed in 1914 by Theodor Boveri (Boveri 2008), and 

studies throughout the 21
st
 century strongly support this theory. Boveri’s observations 

that abnormal chromosomal arrangements are passed to sea urchin off-spring lead to the 

hypothesis that tumor development was a cellular problem and that cancer is, in fact, a 

genetic disease (Boveri 2008; Hansford and Huntsman 2014). Similarly, the observation 

that cancer is a mutation-driven disease led to the “Mutator Phenotype Hypothesis.” First 

described by Lawrence Loeb, this hypothesis states that “mutations occur randomly 

throughout the genome, and among these would be mutations in genes that guarantee the 

fidelity of DNA replication… and repair” (Loeb, Springgate, and Battula 1974). 

Together, these ideas have led to the current belief that “defects in genome maintenance 

are… instrumental for tumor progression” (Hanahan and Weinberg 2011). The data 
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presented in this dissertation offer insights into how the RAD51D DNA repair protein 

contributes towards maintaining genomic integrity.  

Chapter 2 provides an overview of literature discussing types of DNA damage 

that are recognized and repaired by the homologous recombination (HR) proteins, that 

specifically includes double strand breaks (DSBs), interstrand crosslinks (ICLs), and 

thiopurine-induced base pair mismatches. The RAD51 family of proteins – RAD51, 

RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 – are described, and their activity 

during HR-mediated repair is discussed. Post-translational modifications (PTMs) regulate 

DNA repair pathways. Ubiquitination and SUMOylation are described, and the function 

of these PTMs during DNA repair is highlighted. Finally, PTMs that occur along RAD51 

proteins are discussed. Experiments in subsequent chapters focus on the RAD51D HR 

protein.  

 Chapter 3 presents work that was published in the research article entitled 

“RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair 

and maintaining chromosome integrity” in DNA Repair in April 2016 (Yard et al. 2016).  

The data in this paper demonstrated that RAD51D directly interacts with the E3 ubiquitin 

ligase RNF138, and that this interaction is mediated by the regions encoded by exon 5 

and exon 7 along RNF138. RNF138 ubiquitinates RAD51D, and data presented in this 

Chapter also demonstrate that this modification occurs along RAD51D and not the 

RAD51C protein.  

 Chapter 4 presents work that identified two lysine residues along RAD51D – 

K235 and K298 – that are critical for ICL repair. In this study, single point mutations 

were generated in lysine codons along the MmRad51d gene to introduce arginine at those 
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locations. Substitution of two lysines – K235R and K298R –conferred cellular sensitivity 

to mitomycin C (MMC). Yeast-two-hybrid analysis demonstrated that these residues are 

not required for RAD51D interaction with RAD51C, XRCC2, or RNF138. A lysine-null 

mutant (K0) was 3 times more stable than wild-type RAD51D, and stability of K235R 

and K298R was increased 2- and 3-fold, respectively, compared with wild-type. In vivo 

ubiquitination assays detected a band corresponding to 3 ubiquitin molecules was present 

in wild-type, but not K0 samples, suggesting loss of a short ubiquitin chain along the 

protein in the absence of lysine residues. Furthermore, homology-directed repair assays 

suggest that neither K235 nor K298 is required for repair of SceI induced DSBs. 

Chapter 5 presents data that were published in the research article entitled 

“Thiopurine-induced mitotic catastrophe in Rad51d-deficient mammalian cells” in 

Environmental and Molecular Mutagenesis in September 2017 (Wyatt et al. 2017). The 

focus of this work was RAD51D function in response to 6-thioguanine (6TG)-induced 

base pair mismatches. In Rad51d-deficient cells, there was increased co-localization of 

telomere probes with γ-H2AX foci compared to Rad51d-proficient cells, which further 

increased upon treatment with 6TG. Chromosome fusions following 6TG treatment were 

detected, and telomere positive staining was observed at fusion points. These findings 

demonstrate that RAD51D provides a protective role against the telomeric DNA damage 

and chromosomal instability caused by thiopurine treatment. 

Rad51d-deficient cells have extensive chromosomal aberrations, such as fusions, 

translocations, and telomere defects, that are often observed in ovarian cancer cells. For 

this reason, Rad51d-deficient mouse embryonic fibroblasts (MEFs) can be used as a 

model for genomic unstable ovarian cancers. In Chapter 6, gene expression profiles of 
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Rad51d
+/+

Trp53
-/-

 (Rad51d-proficient) and Rad51d
-/-

Trp53
-/-

 (Rad51d-deficient) primary 

MEF cell lines were assessed by microarray and RNA Seq analyses. Six hundred 

eighteen genes with differential expression between the Rad51d-proficient and -deficient 

cell lines were identified by microarray. Twenty-one of the identified genes are 

associated with cell cycle progression, and included: Id1, Id2, and Cdkn1a(p21). RNA 

Seq analysis identified 928 genes that were differentially expressed. In addition, five gene 

fusions were identified in the Rad51d-proficient cell lines, and one of these fusions was 

also present in the Rad51d-deficient samples. Comparison between the two data sets 

identified 111 genes that were differentially expressed between Rad51d-proficient and -

deficient cell lines. Together these data provide insight into gene expression compromises 

that support cell division in a chromosomal unstable cell line. 

In Chapter 7, a model of RAD51D ubiquitination during interstrand crosslink 

repair is proposed, and I hypothesize that ubiquitination at K235 and K298 is required for 

RAD51 recruitment to DSBs. Follow-up experiments to better elucidate the role of K235 

and K298 for RAD51D function are proposed, and I predict that these residues will also 

be necessary for cellular resistance to 6TG. Finally, mass spectrometry analysis should be 

performed to identify specific PTMs that occur along the RAD51D protein.  
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CHAPTER 2 

LITERATURE 

Accurate repair of DNA damage is essential for maintaining genomic integrity, and 

accumulation of mutations is one of the early steps that lead to cancer development. 

Boveri’s observations that abnormal chromosomal arrangements were passed to sea 

urchin off-spring and Loeb’s “Mutator Hypothesis” support the idea that “defects in 

genome maintenance are… instrumental for tumor progression” (Hanahan and Weinberg 

2011; Loeb, Springgate, and Battula 1974; Boveri 2008). Mutations in several key DNA 

damage response genes, including BRCA1, BRCA2, and the RAD51 family of proteins, 

are associated with increased cancer risk (Prakash et al. 2015). In addition to protecting 

the cell from genomic insult, RAD51 and its paralogs – RAD51B, RAD51C, RAD51D, 

XRCC2, and XRCC3 – function during the homologous recombination pathway that 

recognizes and repairs DNA double strand breaks. These lesions can be directly 

introduced through exogenous agents, such as ionizing radiation, or through the repair of 

other forms of damage, such as cisplatin-induced DNA interstrand crosslinks and 

thiopurine-induced base pair mismatches (Figure 2.1) (Karran 2006; Suchankova et al. 

2012).  

The following sections of this introduction will describe three types of DNA 

damage – DNA double strand breaks, DNA interstrand crosslinks, and thiopurine-

induced base pair mismatches – that affect both strands of the DNA double helix. I will 

focus on the RAD51 family of proteins and discuss current knowledge regarding the  
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Figure 2.1. Overview of the cellular consequences of DNA damage. Single strand breaks 

(represented on the left), double strand breaks (represented in the middle), and base pair 

mismatches (represented on the right) left unrepaired or incorrectly repaired lead to cell 

cycle arrest, apoptosis, or cancer.  

 

 

function of these proteins during homologous recombination-mediated DNA repair. In 

the second section, post-translational modifications, particularly ubiquitination, that 

regulate proteins during DNA damage response will be discussed. Finally, the focus of 

the last portion of this chapter will be post-translational modifications along the RAD51 

paralogs.  

 

Types of DNA Damage 

For this section, I will describe three types of DNA damaging agents – ionizing radiation, 

interstrand crosslinking agents, and thiopurine nucleotide analogs – that lead to double 

strand breaks repaired by the RAD51 family of proteins. If left unrepaired or if repaired 

incorrectly, this damage can result in gene deletions, or chromosome translocations and 

fusions. These types of agents were utilized for experiments investigating the function of 

RAD51D in Chapters 4 and 5 of this dissertation.  
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Ionizing radiation induced damage 

Genotoxic damage induced by ionizing radiation (IR), including β-, x-, and γ-rays, is a 

result of high-energy particles entering the cell and directly impacting the DNA. This 

radiative energy can induce a break in one or both strands of double stranded DNA 

(dsDNA) (Boudaiffa et al. 2000). The strand break is caused by electron attachment to a 

DNA component, such as the phosphate group, that initiates a resonance anion state, and 

produces repulsive energy along the nearby atomic bonds. The repulsive energy results in 

bond rupture and produces fragments along the DNA strand (Figure 2.2). Typically, 

electron attachment results in single strand breaks (SSBs), but observations of two strand 

breaks occurring locally within 10 bases of each other (Hieda 1994) suggests that the 

fragments produced by the bond rupture also react with DNA components on 

complementary strands, leading to an energy transfer that induces a second bond break 

and produces a DNA double strand break (DSB) (Boudaiffa et al. 2000). Although 

primary electrons from the IR source are a prominent cause of damage, DSBs can occur 

at lower energy levels, suggesting that these lesions are generated by secondary electrons 

in addition to the primary radiation source (Boudaiffa et al. 2000).  

DNA interstrand crosslinks 

Interstrand crosslinks (ICLs) occur when two complementary DNA strands become 

covalently linked. This type of damage is induced by endogenous reactive aldehydes or 

by exogenous chemicals, most commonly platinum-based chemotherapy drugs. Cisplatin 

is a chemotherapeutic agent used to treat breast, cervical, and ovarian cancers (Dasari and 

Tchounwou 2014). This chemical induces ICLs by binding the N7 of guanine nucleotides   
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Figure 2.2. DNA damage break induced by ionizing radiation (IR). An IR source emits an 

energy particle (represented by the black arrow) that interacts with the phosphate group. 

The electron is absorbed by one of the atoms in the group, which initiates resonance and 

electron transfer to the phosphorous atom. The additional electron increases the energy 

state of the phosphorous atom and leads to hybridization into the d orbital. The higher 

energy state induced by hybridization generates a repulsive energy in the group and leads 

to one of the atomic bonds breaking and the DNA becoming fractured (red bracket).    

 

at 5՛ -GC-3՛  sequences and 5՛ -CG-3՛  sequences (Figure 2.3) (Zou, Van Houten, and 

Farrell 1994).  Cisplatin-induced ICLs that occur at 5՛ -CG-3՛  sequences can distort the 

DNA helix, shifting the platinum residue into the minor groove and bending the DNA 

strand so that the cytosine nucleotide sticks out of the plane of the helix (Malinge, 

Giraud-Panis, and Leng 1999; Huang et al. 1995). Distortions induced by the crosslink 

increases flexibility of the DNA structure, allowing for more thermodynamically 

favorable binding of the damaged DNA in the active site of repair enzymes (Lando et al. 

2014). Cisplatin-induced crosslinks that occur at 5՛ -GC-3՛  sequences do not induce 

helical distortion (Wu et al. 2007), and have a structural conformation resembling native 

DNA. Nevertheless, repair proteins still recognize these lesions.  
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Figure 2.3 Platinum compounds binding guanine nucleotides. Cisplatin binds the N7 

position on two guanine nucleotides in the same DNA strand.  

 

Thiopurine-induced DNA mismatches 

Thiopurines, including 6-thioguanine (6TG), are a class of purine analogs used for the 

treatment of cancer, particularly childhood leukemias (Munshi, Lubin, and Bertino 2014). 

First reported in 1954, 6TG is a guanine analog with a thiol group attached at the C6 in 

place of a carbonyl (Figure 2.4A) (Hitchings and Elion 1954). Thiopurines are pro-drugs 

metabolized to cytotoxic thioguanine nucleotides by hypoxanthine-guanine 

phosphoribosyl transferase (HGPRT) (Munshi, Lubin, and Bertino 2014; Coulthard and 

Hogarth 2005). During the metabolism of 6TG, HGPRT catalyzes the addition of 5-

phosphoribosyl-1-pyrophosphate to the N9 residue of the 6TG molecule producing 6-

thioguanosine monophosphate. Subsequent phosphorylation and reduction by nucleotide 

kinases and reductases result in the production of 6-thioguanine triphosphate (Figure 

2.4B), which can be incorporated into DNA during replication.  
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Figure 2.4. Metabolism of 6TG into cytotoxic nucleotides. (A) Chemical structure of 

guanine and 6-thioguanine. (B) Chemical structure of 6-thioguanine triphosphate 

(6TGTP).  

The Michaelis-Menten constant (Km) of 6TG incorporation into DNA is similar to 

that of guanine, therefore, polymerases are as likely to add a 6TG molecule to the DNA 

strand instead of guanine. Elongation of DNA containing 6TG is not inhibited by the 

analog, and is not recognized as a mismatch during initial incorporation (Karran and 

Attard 2008). Chemically, 6TG nucleotides are more reactive than canonical nucleotides, 

and are methylated in situ to produce methyl-6TG. During subsequent rounds of 

replication, the methyl-6TG resembles an adenine nucleotide and there is approximately 

equal probability of either a cytosine or thymine being added opposite to 6TG during 

replication in the daughter DNA strand, leading to a base pair mismatch (Rappaport 

1993). DNA duplexes containing 6TG:thymine base pairs exhibit a slight helical 
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distortion (Bohon and de los Santos 2005, 2003) that shifts the thymine into the major 

groove of the DNA duplex and the 6TG into the minor groove (Bohon and de los Santos 

2005; Somerville et al. 2003). Interestingly, thermodynamic analysis demonstrates that 

6TG:thymine base pairs are more stable than 6TG:cytosine pairs (Bohon and de los 

Santos 2005), and suggest that the minor distortion does not destabilize the DNA helix.  

In the event of a 6TG:thymine base pair, this lesion is recognized as a mismatch 

by mismatch repair (MMR) proteins, which initiate removal of the newly added thymine 

molecule during replication (Yuan and Wang 2008; Singh et al. 1996). The “futile cycle” 

model proposes that 6TG remains in the template strand, and additional mismatches are 

likely to occur in subsequent rounds of replication. Repetitive addition and removal of 

nucleotides opposite the 6TG base prolongs activation of the MMR proteins, ultimately 

leading to a DNA double strand break (Iyer et al. 2006; Li 2008, 1999).  

 

DNA double strand break repair by homologous recombination proteins 

DNA double strand breaks (DSBs) induced by ionizing radiation (IR) are recognized and 

resolved by proteins in the homologous recombination (HR) (Figure 2.5) and the non-

homologous end-joining pathways. The damage is first recognized by poly(ADP-ribose) 

polymerase 1 (PARP1), a protein that scans the genome and detects DSB lesions (Ciccia 

and Elledge 2010). PARP1 marks the damage site by attaching ADP-ribose molecules to 

chromatin-bound proteins surrounding the break (Haince et al. 2008; Kim, Zhang, and 

Kraus 2005). The ADP-ribose units are essential for recruitment of meiotic 

recombination 11 (MRE11), RAD50, and Nijmegen Breakage Syndrome (NBS1) 

proteins, which form the MRN complex. MRN binding triggers recruitment of the ataxia 



www.manaraa.com

12 

telangiectasia mutated (ATM) kinase that phosphorylates downstream repair proteins. 

One ATM substrate is C-terminal binding protein interacting protein 1 (CtIP), an 

exonuclease that acts in conjunction with the MRN complex to excise DNA and produce 

single strand DNA (ssDNA) surrounding the break (Dodson et al. 2010; Huen, Sy, and 

Chen 2010; You and Bailis 2010; Haince et al. 2008). Following MRN/CtIP-mediated 

nucleotide excision, the single strand binding protein replication protein A (RPA) 

stabilizes the newly produced ssDNA overhangs (Marechal and Zou 2015). Concurrently, 

additional substrates of ATM, including histone H2A and MDC1, are modified by a 

phosphate group. Phosphorylation of histone H2A at Ser139 (γ-H2AX) by ATM marks 

the DSB damage (Mah, El-Osta, and Karagiannis 2010; Rogakou et al. 1998), and 

triggers recruitment of additional repair proteins to the site. Phosphorylated MDC1 

recognizes and binds the γ-H2AX modification, acting as an adaptor to facilitate 

localization of the E3 ubiquitin ligase RNF8 (Mailand et al. 2007; Yu et al. 2016).   

Once localized to the damage site, RNF8 and its associated E2 ubiquitin 

conjugating enzyme, UBC13, attach two ubiquitin molecules to Lys119 of histone H2A 

(Mailand et al. 2007; Hodge et al. 2016; Yu et al. 2016). RNF8/UBC13 promote K63-

linked ubiquitin chains, a variant of the ubiquitin modification that is predominant in 

DNA damage response (Panier and Durocher 2009). The K63-linked chains are 

recognized by a second E3 ligase, RNF168, that attaches additional K63-linked 

ubiquitins to produce a polyubiquitin chain (Doil et al. 2009). The polyubiquitin chain 

generated by RNF168 is recognized by the BRCA1/RAP80 complex via the tandem 

ubiquitin interacting motifs of the RAP80 protein (Sobhian et al. 2007; Poulsen et al. 

2012; Sato et al. 2009). Binding of the BRCA1 complex initiates recruitment of the 
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RAD51 protein. This step is critical for progression of the HR pathway, and mutations in 

either BRCA1 or RAP80 have been associated with decreased RAD51 localization 

(Sobhian et al. 2007). RAD51 recruitment is also mediated by the BRCA2 protein and a 

complex comprised of other members of the RAD51 family – RAD51B, RAD51C, 

RAD51D, and XRCC2 (BCDX2). RAD51 interacts directly with BRCA2 through the 

conserved BRC repeats along the BRCA2 protein, and mutations in these domains 

disrupt HR progression (Galkin et al. 2005). A more detailed discussion of the RAD51 

protein family is presented in an upcoming section of this chapter.  

The BCDX2 complex, in conjunction with BRCA2, promotes RAD51 loading by 

displacing RPA from the ssDNA, allowing the RAD51 filaments to bind the single strand 

overhang (Candelli et al. 2014; Short et al. 2016; Xu et al. 2017; Jensen et al. 2013). 

Loading of RAD51 onto the ssDNA is essential for the homology search and strand 

invasion (Xu et al. 2017). RAD51 initiates search for a homologous template, usually a 

sister chromatid, by binding the dsDNA duplex formed during the strand invasion step 

(Qi et al. 2015). When sufficient homology is reached, RAD51 stabilizes the dsDNA 

duplex. In yeast, a minimum of 15 nucleotides in the template strand must be 

homologous to the RAD51-bound ssDNA (Qi et al. 2015), while a minimum of eight 

homologous nucleotides is required in mammalian cells (Lee et al. 2015; Qi et al. 2015). 

After a homologous sequence is identified, RAD54 integrates into the RAD51 filament, 

displacing RAD51, and allowing DNA polymerases to access the DNA and fill in the gap 

(Sanchez et al. 2013). This replication activity produces Holliday junctions, a cruciform 

structure that contains the four DNA strands joined together (Holliday 1964). After the 

DNA has been extended, the Mus81-Mms4 resolvase facilitates cross-over or non-
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crossover events that resolve the Holliday junctions and produce two intact DNA strands 

with no errors (Wyatt and West 2014). 

 An alternative pathway for repairing IR-induced DSBs is the non-homologous 

end-joining (NHEJ) pathway. This pathway is active throughout the cell cycle and is 

considered to be error-prone as the ends of the breaks are re-ligated regardless of 

homology, which can lead to gene deletions, fusions, and chromosome rearrangements. 

First, DSBs are recognized by the Ku70/Ku80 heterodimer, which binds the ends of the 

DNA on both sides of the break. Formation of this heterodimer leads to activation of the 

catalytic subunit of DNA-dependent protein kinase (DNA-PK), a member of the ATM 

family of kinases. DNA-PK binds to Ku70 and Ku80 and stabilizes the ends of the DNA. 

After stabilization, the DNA ligase IV/XRCC4 complex binds and joins the ends of the 

DNA together, resulting in repair of the DSB (Karran 2000).  

The choice to repair DSBs by HR or NHEJ is now known to be regulated by 

ubiquitination. For example, the E3 ubiquitin ligase RNF138, one of the proteins focused 

on in this dissertation, also plays a role in promoting HR and inhibiting NHEJ. In 

response to IR, RNF138 interacts with Ku70/Ku80 and initiates ubiquitination of the 

Ku80 protein. This modification leads to the degradation of the Ku80 protein, disrupting 

NHEJ and enhancing HR activity (Ismail et al. 2015). Additionally, in conjunction with 

the E2 ligase UBE2D, RNF138 ubiquitinates CtIP to promote end resection in the early 

stages of HR (Schmidt et al. 2015; Ismail et al. 2015).   
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Figure 2.5. Model of homologous recombination-mediated double strand break (DSB) 

repair. The DSB is indicated by a gap in the two lines. First, PARP recognizes and marks 

the damage with ADP-ribosylation of the chromatin surrounding the break. The MRN 

complex binds the ADP-ribose molecule and promotes 5՛  to 3՛  nucleotide excision in 

conjunction with CtIP. RPA is recruited and binds the single strand overhang produced 

by the MRN complex. Concurrently, ubiquitin modifications along the histones 

surrounding the damage are added by RNF8 and RNF168 E3 ligases. The polyubiquitin 

chains are bound by the BRCA1/RAP80 complex that promotes recruitment of BRCA2 

to the damage site. BRCA2 and the RAD51 paralogs displace RPA to allow RAD51 to 

bind to the ssDNA and promote strand invasion of the homologous template (modified 

from Brian D. Yard dissertation).  
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DNA interstrand crosslink repair during S phase 

During DNA replication, two replication forks encounter an interstrand crosslink (ICL), 

resulting in a stalled replication fork. To remove the lesion, a core complex comprised of 

Fanconi Anemia (FA) proteins (FANCA, -B, -C, -E, -F, -G, -L, -M) is recruited and binds 

DNA strands surrounding the lesion (Figure 2.6). The FA core complex stabilizes the 

lesion and initiates recruitment of the FANCD2/FANCI heterodimer. A crucial step in 

FA-mediated ICL repair is mono-ubiquitination of FANCD2 and FANCI by the FANCL 

E3 ligase, a modification that activates the complex (Kim and D'Andrea 2012; Rickman 

et al. 2015; Liang et al. 2016). Activation of FANCD2/FANCI coordinates recruitment of 

FANCP/SLX4 and the endonucleases XPF, MUS81/ERCC1, and SLX1. Together, these 

proteins catalyze the incision of one DNA strand on both sides of the ICL lesion, 

producing a double strand break and leaving the crosslink as an overhang on the opposite 

strand (Kottemann and Smogorzewska 2013; Jo and Kim 2015; Knipscheer et al. 2009). 

The lesion overhang is displaced from the DNA helix and excised by nucleotide excision 

repair (NER) proteins, and translesion synthesis proteins fill in the gap across the strand 

(Haynes et al. 2015; Muniandy et al. 2010). Following FA function, the exonuclease CtIP 

interacts with FANCD2 and excises the DNA surrounding the break to produce a single 

strand overhang (Unno et al. 2014). BRCA2 and the BCDX2 complex coordinate 

recruitment of RAD51 to the overhang (Clauson, Scharer, and Niedernhofer 2013). 

RAD51 initiates strand invasion of the complementary intact dsDNA, allowing DNA 

polymerases to fill in the gap.  
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Figure 2.6. Key proteins in multiple pathways repair DNA interstrand crosslinks 

(modified from (Kim and D'Andrea 2012). (1) The FA core complex binds the lesion and 

recruits FANCD2/FANCI. (2) FANCD2/FANCI mediate strand incision and ‘flip out’ of 

the ICL lesion. (3) Translesion synthesis proteins replicate across the lesion. (4) 

Nucleotide excision repair proteins remove the lesion and fill in the gap. (5) CtIP 

interacts with FANCD2/FANCI and excises the DNA to produce a single strand 

overhang. RPA (not shown) coats the overhang to stabilize the ssDNA. (6) BRCA2 and 

the BCDX2 complex promote recruitment and binding of RAD51 to the single strand 

overhang. (7) RAD51 facilitates strand invasion of the homologous template. (8) DNA 

polymerases fill in the break and the Holliday junctions are resolved by Mus81-Mms84 

resolvases.  

 

Repair of mismatched nucleotides 

Recognition and repair of DNA base pair mismatches, such as those introduced by 6-

thioguanine (6TG), is performed by the mismatch repair (MMR) pathway. In eukaryotes, 

the mismatch is first recognized by MutSα (MSH2/MSH6), which binds the 
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mismatch(Casorelli, Russo, and Bignami 2008). Binding of MutSα initiates recruitment 

of MutLα (MLH1/PMS2) to form a MutSα/MutLα ternary complex (Li and Modrich 

1995; Wang and Edelmann 2006). The complex scans along the DNA duplex until it 

encounters PCNA/RFC that can be either upstream or downstream of the mismatch. 

Binding activates the endonuclease activity of MutLα which generates an incision in the 

daughter strand (Kadyrov et al. 2006). The exonuclease 1 (EXO1) protein recognizes the 

nick and excises the strand in a 5՛  to 3՛  direction through the mismatch (Li 2008; 

Kadyrov et al. 2006). RPA binds the ssDNA overhang to stabilize strand that is produced 

by EXO1. DNA polymerase δ fills in the gap, and DNA ligase I seals the nick (Pena-Diaz 

and Jiricny 2012; Jiricny 2006). A new mismatch re-activates the MMR proteins, and the 

process repeats itself (York and Modrich 2006). Prolonged activation of MMR proteins 

can result in a futile cycle that leads to a double strand break that is repaired by HR 

proteins (Karran 2001).   

 

The RecA and RAD51 connection 

The Escherichia coli protein, RecA, is a highly conserved recombinase that promotes 

recombination-mediated repair of DNA damage (Bell and Kowalczykowski 2016). In 

vivo, RecA forms nucleoprotein filaments that preferentially bind single strand DNA 

(ssDNA) generated by resection of double strand DNA (dsDNA) during DNA damage 

response (Bell and Kowalczykowski 2016). RecA nucleofilament formation creates 

tension along the strand and results in unwinding of the DNA (Singleton and Xiao 2001).  

Binding of RecA to sites of damage is an essential step in the homologous recombination 
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(HR) repair pathway (Bell and Kowalczykowski 2016), and this protein functions to 

facilitate strand invasion of the homologous template during DNA repair (Singleton and 

Xiao 2001). 

The yeast RecA homolog, RAD51, is essential for maintaining genome stability 

and integrity throughout the mitotic cell cycle and during meiosis (Krogh and Symington 

2004; Shinohara, Ogawa, and Ogawa 1992). Similar to RecA, yeast RAD51, forms 

helical nucleoprotein filaments along ssDNA that promote strand exchange activity in an 

ATP-dependent manner (Shinohara, Ogawa, and Ogawa 1992; Ogawa et al. 1993; 

Shinohara and Ogawa 1999; Sung 1994; Conway et al. 2004; Chen et al. 2010). Alanine 

substitution at lysine 191 in yeast RAD51 (K191A)
1
 diminished ATPase function, and 

decreased mitotic recombination activity of the protein. Additionally, cells expressing the 

RAD51-K191A mutant were more sensitive to ionizing radiation than wild-type 

expressing cells (Morgan, Shah, and Symington 2002). Another mutant, RAD51-H352Y, 

displayed similar ssDNA binding activity as wild-type RAD51, but was defective for 

nucleotide exchange and strand exchange activity. Structural analysis determined that 

RAD51-H352Y binding to ssDNA stabilized a nearby phenylalanine (F187) residue and 

blocked the γ-phosphate binding site of a Walker Box A motif (described below), 

impairing ATPase activity of the protein (Chen et al. 2010). These data further 

demonstrated that RAD51 activity is ATP-dependent. 

A mammalian homolog of the RecA and yeast RAD51 protein, also named 

RAD51, is essential for HR in response to ultraviolet radiation (Morita et al. 1993). Early 

                                                           
1
 Note that the nomenclature used to represent amino acid substitutions is the “wild-type single 

letter amino acid designation” followed by the “residue number” then the “substituted amino acid 

designation” (e.g. K191A). This nomenclature will be used throughout this dissertation.  
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studies demonstrated that expressing Mus musculus (MmRad51) in RAD51-deficient 

yeast restored cell survival, particularly in response to double strand breaks (DSBs). The 

mouse Rad51 gene has approximately 83% and 55% identity with the yeast RAD51 and 

E. coli RecA genes, respectively (Morita et al. 1993). RAD51 monomers interact to form 

oligomers in free solution prior to binding to ssDNA, and the size of the oligomer affects 

DNA binding, with smaller oligomers binding more readily to ssDNA than larger 

oligomers (Sung et al. 2003; Candelli et al. 2014). Structural analysis using cryo-electron 

microscopy found that RAD51 nucleofilaments form a helical structure around the 

ssDNA (Xu et al. 2017; Short et al. 2016). 

Although RAD51 oligomers have a higher affinity for ssDNA, the ability to bind 

to dsDNA is essential for promoting homology search and strand exchange during repair 

(Danilowicz et al. 2014). When bound to dsDNA, RAD51 filaments extend the DNA 

strand and create tension along the helix and unwinding the DNA (Benson, Stasiak, and 

West 1994). This tension exposes Watson-Crick base pairings and allows for brief 

bonding of non-homologous ssDNA to the dsDNA during the homology template search 

(Danilowicz et al. 2014).  

 

Mammalian RAD51 Paralogs 

During homologous recombination (HR), the five RAD51 paralogs – RAD51B, 

RAD51C, RAD51D, XRCC2, and XRCC3 – alleviate competition between RAD51 and 

RPA for DNA binding, promoting RAD51 loading onto single stranded DNA 

(Sigurdsson et al. 2001), and assist in Holliday junction resolution (Liu et al. 2007; 
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Compton, Ozgur, and Griffith 2010). Each paralog has the conserved Walker Box A and 

B ATPase motifs, multimer (BRC) interface, and helix-hairpin-helix region discussed 

below (Figure 2.7) (Miller et al. 2004; Kawabata, Kawabata, and Nishibori 2005).   

  The Walker Box A and B motifs are ATP binding sites that catalyze the 

hydrolysis of ATP to promote ssDNA binding activity of the paralogs (Braybrooke et al. 

2000; Chen et al. 2010; Gruver et al. 2005; Kawabata, Kawabata, and Nishibori 2005), 

and mutations in the Walker Box A motif have been shown to decrease ATPase activity 

and to increase cellular sensitivity to DNA damaging agents. Arginine substitution at a 

conserved lysine residue in the Walker Box A motif of the RAD51 paralogs decreases 

recombination activity. Substitution at K113 (K113R) in RAD51D lead to cell death in 

response to DNA damaging agents in mouse embryonic fibroblasts and Chinese hamster 

ovarian (CHO) cells (Wiese et al. 2006; Gruver et al. 2005). K113R interaction with 

RAD51C and XRCC2 was 8- and 2-fold lower than wild-type RAD51D, respectively 

(Gruver et al. 2005).  Substitutions at K113 in Walker Box A of XRCC3 eliminated 

ATPase activity and lead to prolonged association between XRCC3 and RAD51C, 

suggesting that ATP hydrolysis activity is required to regulate paralog complex formation 

(Yamada et al. 2004). Loss of function Walker Box B mutants fail to complement 

Rad51d-deficiency in CHO cells motif in the presence of MMC (Wiese et al. 2006).  

 The BRC interface is a region of homology between the RAD51 paralogs and the 

breast cancer associated 2 (BRCA2) protein (Pellegrini et al. 2002; Lo et al. 2003). 

Interestingly, RAD51 interacts with BRCA2 through this interface, but none of the other 

paralogs have been shown to bind BRCA2 (Lo et al. 2003). Peptide fragments from the 

BRC region of BRCA2 act as an inhibitor of RAD51 binding to BRCA2 and prevent  
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RAD51 nucleoprotein filament formation (Nomme et al. 2008). Furthermore, substitution 

of Tyr315 in the BRC interface of RAD51 inhibits dsDNA unwinding, presumably 

through decreased RAD51 filament formation (Takizawa et al. 2004). 

 

 

Figure 2.7. RAD51 and its paralogs indicating known domains. The RAD51 family share 

approximately 20 – 30% identity and have several conserved domains, including a linker 

region (green) and a helix-hairpin-helix structure (grey). Two Walker Box ATPases 

motifs (A and B; red) are present in all paralogs and a multimer (BRC) interface domain 

(yellow) mediates interaction between RAD51 and BCRA2 and is predicted to mediate 

interactions between the paralogs.  

 

RAD51 paralog complexes 

Yeast-two-hybrid protein interaction analysis demonstrated that the five RAD51 paralogs 

bind in several different combinations: (1) RAD51B with RAD51C, (2) RAD51C with 

RAD51D, (3) RAD51D with XRCC2, and (4) RAD51C with XRCC3 (Dosanjh et al. 

1998; Liu et al. 1998; Braybrooke et al. 2000; Schild et al. 2000). Immunoprecipitation of 

human RAD51 paralogs further identified two distinct complex formations: RAD51B-
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RAD51C-RAD51D-XRCC2 (BCDX2) and RAD51C-XRCC3 (CX3) (Masson et al. 

2001; Rajesh et al. 2009).  Structural analysis using transmission electron microscopy 

revealed that both the BCDX2 and CX3 complexes form a multimeric ring structure 

arranged in a flat disc around DNA Holliday junctions (Compton, Ozgur, and Griffith 

2010).  

The BCDX2 complex preferentially binds to two distinct DNA structures: Y-

shaped DNA and DNA Holliday junctions (Yokoyama et al. 2004), and is required for 

RAD51 foci formation in response to IR-induced DSBs (Chun, Buechelmaier, and 

Powell 2013). Depletion of the RAD51D gene decreased RAD51 foci formation, but 

depletion of XRCC3 did not affect RAD51 foci formation in response to IR suggesting 

that the BCDX2, not the CX3 complex, is responsible for recruiting RAD51 to damage 

sites following IR treatment (Chun, Buechelmaier, and Powell 2013). Additionally, the 

BCDX2 complex stabilizes Holliday junctions and promotes proper resolution of the 

DNA strands (Liu et al. 2004; Liu et al. 2007; Chun, Buechelmaier, and Powell 2013). 

Deletion/disruption mutations of RAD51 paralogs in the mouse genetic model 

To date, deletions of the RAD51 protein family have only been generated in mouse 

embryonic fibroblasts (MEFs), DT40 avian cells, or Chinese hamster ovarian cells, and 

loss of each gene results in an embryo lethal phenotype (Takata et al. 2001; Deans et al. 

2003; Hinz et al. 2006; Griffin et al. 2000; Shu et al. 1999; Pittman and Schimenti 2000; 

Lim and Hasty 1996; Tsuzuki et al. 1996; Kuznetsov et al. 2009). For the purposes of this 

dissertation, only mouse gene deletions of the RAD51 paralogs will be discussed.  
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To study the Rad51 gene deletion, heterozygous Rad51 (Rad51
+/-

) mice were 

intercrossed, and out of 148 offspring, zero pups were Rad51-null (Rad51
-/-

) (Tsuzuki et 

al. 1996).  Early development analysis of potential Rad51
-/- 

embryos found that one out of 

nine 2-cell stage embryos, and one out of 109 4- to 8-cell stage embryos were Rad51-null
 

(Tsuzuki et al. 1996). Additionally, blastocysts isolated from Rad51
-/-

embryos failed to 

divide in culture (Tsuzuki et al. 1996; Lim and Hasty 1996). To prolong embryo 

development, Rad51
+/-

 mice were intercrossed with heterozygous Trp53 (Trp53
+/-

) mice, 

and it was observed that the embryo lethal phenotype can be partially rescued when the 

Rad51 gene deletion is generated on a Trp53-null (Trp53
-/-

) background (Shu et al. 1999; 

Lim and Hasty 1996). Rad51
-/-

Trp53
-/- 

embryos were slightly smaller than control 

littermates (Lim and Hasty 1996), and developed to 8.5 days post conception (dpc) 

(Tsuzuki et al. 1996). However, out of 41 pups, zero were Rad51
-/-

Trp53
-/-

, demonstrating 

that the Trp53
-/-

 background did not restore offspring survival (Lim and Hasty 1996). 

Despite embryo survival being extended by the concurrent deletion of Trp53, cells 

derived from Rad51
-/-

Trp53
-/- 

embryos did not proliferate in cell culture (Lim and Hasty 

1996). 

To generate Rad51c-deficient mice, heterozygous Rad51c (Rad51c
+/-

) mice were 

intercrossed, and no viable pups were obtained. It was also observed that the ratio of live 

births for wild-type versus Rad51c
+/- 

deviated from the Mendelian 2:1 ratio, suggesting 

that loss of one Rad51c allele might affect embryo development (Kuznetsov et al. 2009). 

Rad51c embryos were phenotypically abnormal at 7.5 and 8.5 dpc compared with wild-

type Rad51c embryos, and TUNEL staining of cells isolated from these embryos showed 

increased levels of apoptosis. Concurrent deletion of the Trp53 gene extended embryo 



www.manaraa.com

25 

development to 10.5 dpc. These embryos were smaller than littermate controls and did 

not appear to develop further. MEF cell lines were successfully generated from Rad51c
-/-

Trp53
-/-

 embryos (Kuznetsov et al. 2009).  

Deletion of the Rad51d gene has only been successful in MEFs (Smiraldo et al. 

2005) and Chinese hamster ovarian cells (Hinz et al. 2006). Heterozygous Rad51d 

(Rad51d
+/-

)
 
mice were intercrossed and out of 102 live births, none were Rad51d-

deficient (Rad51d
-/-

). It was determined that embryo death occurred between 8.5 and 11.5 

dpc in Rad51d
-/-

 embryos (Pittman and Schimenti 2000). Deletion of the Trp53 gene in 

Rad51d
-/-

 embryos extended embryo development to 15.5 dpc but did not result in live 

pups (Smiraldo et al. 2005). Rad51d
-/-

 embryos exhibit severe developmental and 

chromosomal defects compared to Rad51d
+/-

 littermates (Smiraldo et al. 2005). Similar to 

cells isolated from Rad51
-/-

 embryos, Rad51d
-/-

Trp53
+/+

 cells did not grow in culture 

(Pittman and Schimenti 2000), but Rad51d
-/-

Trp53
-/-

 cells were able to proliferate in 

culture (Smiraldo et al. 2005). 

Consistent with deletion of other RAD51 paralogs, loss of Xrcc2 in mice resulted 

in embryo lethality. Embryo death occurred throughout gestation between 9.5 – 18.5 dpc. 

The observed neonatal lethality in these embryos appeared to be due to respiratory failure 

and was attributed to a high frequency of apoptosis in post-mitotic neurons (Deans et al. 

2000). Deletion of the Trp53 gene in Xrcc2
-/-

 mice extended embryo development from 

12.5 dpc to 18.5 dpc but did not result in any live births. Cells isolated from Xrcc2
-/-

 

embryos did not proliferate in culture, but consistent with Rad51c
-/-

 and Rad51d
-/-

 cells, 

deletion of the Trp53 gene allowed for Xrcc2
-/-

Trp53
-/-

 MEF cell lines to be grown in 

culture (Adam, Deans, and Thacker 2007).  
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Given the importance of RAD51 paralogs in embryo development and cell 

survival, it follows that deletion of these genes in human cells would provide further 

insight into their function. However, to date, no successful attempts to generate RAD51 

paralog gene deletions in human cells has been reported. RNA interference has been used 

to transiently decrease gene expression of RAD51 paralogs in human U2OS, MCF7, 

HT1080, HeLa, and T84 cells (Jensen et al. 2013; Chun, Buechelmaier, and Powell 2013; 

Lio et al. 2004; Lee et al. 2014; Wang et al. 2014; Loignon et al. 2007). In human WI38-

VA13/2RA cells, depletion of RAD51D by two separate siRNAs resulted in apoptosis 

within seven days of transfection (Tarsounas et al. 2004). A different siRNA used in the 

same study resulted in cell death at day 5 when only 50% of the RAD51D protein was 

depleted (Tarsounas et al. 2004). Depletion of the RAD51D gene by 84% using siRNA in 

HT1080 and HEK293 cells increased chemosensitivity of these cells to the DNA damage 

agent mitomycin C (Jensen et al. 2013). Depletion of RAD51D in human U20S and 

MCF7 cells also significantly decreased repair of DNA double strand breaks induced by 

the SceI endonuclease (Chun, Buechelmaier, and Powell 2013).  

Disease phenotypes associated with RAD51 genes 

The National Institutes of Health provides the ClinVar database, a publicly accessible 

archive of reports designed to support the evolution of understanding of the relationship 

between genotypes and clinically observed phenotypes, and to establish the clinical 

validity of an identified gene variant (Landrum et al. 2016). The mutant alleles listed in 

the ClinVar database have been identified through clinical testing, research, or extracted 

from the literature, and have been associated with disease phenotypes. Germline 

mutations in Homo sapiens RAD51, RAD51C, RAD51D, and XRCC3, have been 
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reported to the NIH ClinVar database and are classified as risk factors for breast, ovarian, 

and melanoma cancers (Table 2.1). 

An intron variant of RAD51 increases disease risk in breast cancer patients that 

also carried BRCA2, but not BRCA1, mutations (Levy-Lahad et al. 2001). In this study, 

patients homozygous for the G>C single nucleotide polymorphism had a significant 

increase in disease risk compared to patients that were heterozygous G/C or homozygous 

G/G. Risk was further increased in patients that carried mutations in the BRCA2 gene. 

This mutation modifies splicing in the 5՛  UTR of the RAD51 gene and influences 

RAD51 expression levels in patients (Antoniou et al. 2007). Interestingly, the increased 

risk in BRCA2-mutant patients was only associated with breast but not ovarian cancer 

risk (Levy-Lahad et al. 2001). 

Three mutations in the RAD51C genes have been linked with an increased risk of 

cancer, most notably breast and ovarian cancers (Loveday et al. 2011; Loveday et al. 

2012; Meindl et al. 2010; Pelttari et al. 2011; Thompson et al. 2012; Kuschel et al. 2002) 

(Table 2.1). RAD51C germline mutations have long been associated with increased risk 

for ovarian cancer (Loveday et al. 2012; Meindl et al. 2010; Pelttari et al. 2011; Song et 

al. 2015), while a connection with breast cancer risk has been debated in the literature 

(Schnurbein et al. 2013; Thompson et al. 2012). Novel splice-variant mutations that result 

in truncated RAD51C protein have been identified in both breast and ovarian cancer 

patients (Neidhardt et al. 2017), and pathogenic RAD51C variants have been detected in 

patients with a personal history of triple negative breast cancer (Buys et al. 2017). Six 

RAD51D mutations that increased a patient’s risk for developing ovarian cancer, but not 

breast cancer, have been identified (Kraus et al. 2017; Song et al. 2015; Loveday et al. 
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2011). Recently, a RAD51D mutant allele was identified in a triple negative breast cancer 

patient, supporting its classification as a breast cancer susceptibility gene (Kraus et al. 

2017).  

In addition to increasing a patient’s risk for a disease, genetic variants can be used 

to predict patient response to current chemotherapy agents (Le et al. 2017). Mutations in 

DNA repair genes, such as RAD51C and RAD51D, conferred cellular sensitivity to 

platinum-based compounds and to clinically available poly(ADP-ribose) polymerase 

inhibitors (PARPi) (Pennington et al. 2014; Huang et al. 2013; Loveday et al. 2011; Min 

et al. 2013). However, one mechanism of drug resistance to chemotherapies is re-

activation of mutated DNA repair genes. A study of twelve pairs of pre-treatment and 

post-progression tumor biopsies from patients in a clinical trial of the PARPi Rucaparib 

identified secondary somatic mutations in RAD51C and RAD51D that confer resistance 

to therapy (Kondrashova et al. 2017). Genetic analysis was performed in the twelve 

paired samples (pre-treatment and post-progression) isolated from patients treated with 

Rucaparib. Of the twelve pre-treatment samples, six had truncation mutations in 

RAD51C or RAD51D, and five out of the six corresponding post-progression samples 

had one or more secondary mutations that restored the open reading frame of the affected 

gene and increased Rucaparib resistance (Kondrashova et al. 2017).  
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Table 2.1. RAD51 and paralog mutant alleles classified as “risk factor” as reported to the 

National Institutes of Health ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) 

(Landrum et al. 2016). 

 

Gene 
Mutant 

Allele 
Condition/Disease Citation(s) 

RAD51 
   

135G>C 
intron 

variant 

Breast cancer in BRCA2 

mutation carriers 

(Antoniou et al. 2007; Levy-

Lahad et al. 2001) 

760C>T Arg254Ter Mirror movements 2 
(Depienne et al. 2012; 

Depienne et al. 2011) 

RAD51C/ 

FANCO    

1-BP Del 

93G 
Frame shift Breast/Ovarian Cancer (Pelttari et al. 2011) 

1-BP Del 

230G 
Frame shift Breast/Ovarian Cancer (Thompson et al. 2012) 

374G>T Gly125Val Breast/Ovarian Cancer (Meindl et al. 2010) 

RAD51D 
   

345G>C Gln115His Breast/Ovarian Cancer (Loveday et al. 2011) 

480+1G>

A 
Frame shift Breast/Ovarian Cancer 

(Loveday et al. 2011) 

803G>A Trp268Ter Breast/Ovarian Cancer 
(Loveday et al. 2011) 

1-BP Del 

363A 
Frame shift Breast/Ovarian Cancer 

(Loveday et al. 2011) 

757C>T Arg235Ter Breast/Ovarian Cancer 
(Loveday et al. 2011) 

556C>T Arg186Ter Breast/Ovarian Cancer 
(Loveday et al. 2011) 

XRCC3 
   

IVS5 

A>G 
SNP Breast cancer (Kuschel et al. 2002) 

722C>T T241M Cutaneous malignant 

melanoma 
(Winsey et al. 2000) 
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Ubiquitin modification of Proteins 

DNA damage repair pathways are regulated by post-translational modifications (PTMs). 

Ubiquitination events during homologous recombination (HR)-mediated double strand 

break (DSB) repair are essential for pathway progression and accurate repair of the 

damage. Ubiquitin modification can activate proteins, initiate recruitment and binding of 

downstream proteins to a damage site, or signal proteasomal-mediated protein 

degradation (Akutsu, Dikic, and Bremm 2016). A small ubiquitin-like modifier (SUMO) 

molecule can also be added to proteins, and crosstalk between ubiquitin modifications 

and SUMO-modifications promotes DNA damage response and repair. These regulatory 

modifications will be discussed in this section.  

Ubiquitin is a conserved 76 amino acid protein expressed throughout the cell. 

Modifications occur when the ubiquitin molecule is covalently linked at its C-terminus 

glycine residue (Gly76) to the ε-amine group of a lysine residue or to the N-terminus of 

the substrate (Busch and Goldknopf 1981). Ubiquitins are attached to a target protein by 

a three-step enzymatic reaction performed by E1 (ubiquitin-activating), E2 (ubiquitin-

conjugating), and E3 (ubiquitin-ligating) enzymes (Figure 2.8A and B) (Pickart 2004; 

Hershko 1983). Binding of the ubiquitin molecule to an E1 enzyme consumes ATP and 

activates the ubiquitin by generating a high-energy thioester bond between the C-

terminus of the ubiquitin and the cysteine in the E1 active site (Pickart 2004). Following 

activation, the ubiquitin molecule is transferred to an E2 enzyme. E2s have a core 

ubiquitin-conjugating domain that forms an active site to bind an activated ubiquitin 

molecule via a highly conserved cysteine residue. Ubiquitin-bound E2s interact with two 
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types of E3 ligases: RING (really interesting new gene) or HECT (homologous to the E6-

AP carboxyl terminus) (Ye and Rape 2009).  

 

Figure 2.8. Ubiquitin modification of target proteins. (A) Three step enzymatic addition 

of a ubiquitin molecule to a substrate protein. The ubiquitin is activated and ligated to an 

E1 enzyme in a reaction that consumes ATP. The activated ubiquitin is transferred to an 

E2 enzyme that interacts directly with a RING E3 ligase. The RING E3 binds the target 

protein and promotes the transfer of the ubiquitin molecule from the E2 to the substrate. 

(B) The activated ubiquitin molecule is transferred from the E2 enzyme directly to the 

HECT E3 ligase. The HECT interacts with the substrate and facilitates the transfer of the 

ubiquitin to the protein. (C) Polyubiquitin chains are formed between the terminal glycine 

of one ubiquitin and one of seven lysine residues (indicated by the grey box) of another 

ubiquitin molecule.  

 

The E3 ligases provide substrate specificity by binding to the target protein and 

facilitating the transfer of the ubiquitin (Clague, Heride, and Urbe 2015). HECT E3s are 

catalytically active and bind the ubiquitin molecule prior to transfer to the substrate 
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(Figure 2.7A) (Scheffner and Kumar 2014). RING E3 ligases are catalytically inactive, 

and act as scaffolds between the E2 enzyme and the substrate, promoting E2-dependent 

ubiquitination of target proteins (Figure 2.7B) (Lorick et al. 1999). The RING domain 

serves as the interacting region between the E3 and the E2 enzymes. The structure of this 

domain is a double loop that coordinates binding of two zinc ions, producing a surface for 

the E2 to bind (Metzger et al. 2014).  

Ubiquitins can be added to single or multiple lysine residues along a target protein 

to produce mono- and multi-mono modifications, or ubiquitin chains can be generated 

along a single lysine residue. Polyubiquitin chains are formed when multiple ubiquitins 

are attached directly to each other through isopeptide bonds between a lysine residue on 

the previous molecule and Gly76 on the subsequent molecule (Figure 2.7C) (Akutsu, 

Dikic, and Bremm 2016; Swatek and Komander 2016). There are seven lysine residues 

along the protein that can be used to generate poly-ubiquitin chains (Sloper-Mould et al. 

2001). The function of a polyubiquitin chain is determined by the lysine residue along 

each ubiquitin that forms the isopeptide bond. For example, chains generated between 

Lys48 of ubiquitin molecules (referred to as K48 linked chains) target a substrate for 

proteasomal degradation (Akutsu, Dikic, and Bremm 2016).  

Ubiquitin chains have characteristic structural conformations that mediate 

recognition by chain-specific enzymes and binding proteins (Thach et al. 2016; Ikeda, 

Crosetto, and Dikic 2010). The ‘closed’ conformation occurs when two ubiquitin 

moieties directly interact via a hydrophobic patch in the middle of the ubiquitin protein. 

The ‘open’ conformation is observed when two ubiquitins are only linked by the 

isopeptide bond between the terminal glycine of one molecule and the lysine residue of 
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the second molecule (Ye et al. 2012). In solution, di-ubiquitin K63 chains adopt both 

‘open’ and compact ‘closed’ conformations that are recognized by ubiquitin interacting 

motifs of DNA damage response proteins (Sato et al. 2009). Di-ubiquitin K48 chains 

predominantly adopt a ‘closed’ conformation recognized by the 19S subunit of the 

proteasome and target a protein for proteasomal degradation (Thach et al. 2016; Varadan 

et al. 2004; Ye et al. 2012; Chau et al. 1989).  

The proteolytic component of the proteasome is a 20S unit is comprised of four 

homologous rings stacked together. The top and bottom rings are formed by seven α-

subunits that recognize unfolded protein peptide chains. The two inner rings consist of 

seven β-subunits and form the proteolytic chamber of the proteasome (Cromm and Crews 

2017). In addition to the core particle, there are various ‘cap’ structures that bind the 

proteasome. The 19S regulatory particle binds to one or both of the α-subunit rings of the 

20S core particle to form the 26S proteasome (Guo and Peng 2013; Cromm and Crews 

2017).  The 19S subunit recognizes and cleaves ubiquitin chains along a substrate in an 

ATP-dependent manner. After removal of the ubiquitins, the substrate is shuttled into the 

proteolytic chamber and is degraded. The active site of the 19S subunit is specific for the 

‘closed’ conformation of K48-linked ubiquitin chains, therefore, only these chains lead to 

proteasomal degradation (Ye et al. 2012; Chau et al. 1989).  

Proteasome inhibition has been a mechanism of disease treatment for several 

decades. Bortezomib is a proteasome inhibitor approved by the United States Food and 

Drug Administration for the treatment of multiple myeloma since 2003, and remains a 

first-line treatment for the disease (Dou and Zonder 2014; Grosicki et al. 2014; Kane et 

al. 2003; Kouroukis et al. 2014; Schlafer et al. 2017). MG132 is a peptide aldehyde and a 
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naturally occurring proteasome inhibitor derived from a Chinese medicinal plant. This 

compound binds the active site of the β-subunits of the 26S proteasome, preventing 

proteolysis of ubiquitinated substrates (Guo and Peng 2013; Rock et al. 1994).  

 

 

SUMOylation 

Protein modification with SUMO (small ubiquitin-like modifier) molecules has emerged 

as another regulatory mechanism of DNA damage repair pathways (Nie and Boddy 2016; 

Pichler et al. 2017). There are five known SUMO paralogs expressed in mammalian 

cells: SUMO1, SUMO2/3, SUMO4, and SUMO5. SUMO1 has approximately 50% 

identity with SUMO2 and SUMO3, while the latter two paralogs have above 97% 

identity, and comprise the majority of the cell pool (Saitoh and Hinchey 2000; Pichler et 

al. 2017). Before being attached to a substrate, SUMO molecules must be processed by 

SUMO-specific proteases that cleave the C-terminus to produce a di-glycine motif that 

can be attached to ε-amine of lysine residues along target proteins (Eifler and Vertegaal 

2015). Unlike SUMO1 and SUMO2/3, SUMO4 has a proline residue that prevents 

processing by any known SUMO-specific proteases and is not thought to modify proteins 

(Owerbach et al. 2005). SUMO molecules attached to target proteins at a SUMO 

consensus sequence (ψKxE where ψ is a bulky hydrophobic residue and E is an acidic 

residue) (Pichler et al. 2017; Hendriks et al. 2017; Bernier-Villamor et al. 2002), often 

found near phosphorylation sites along substrates (Hendriks et al. 2017).  
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SUMOylation occurs via a ubiquitination-like mechanism mediated by three 

enzymes: UBA/AOS1 (SUMO-activating SAE1/E2), UBC9 (E2 SUMO-conjugating), 

and E3 (SUMO-ligating) enzymes (Figure 2.9).  

 

 

Figure 2.9. Model of the SUMOylation cascade. A SUMO molecule is activated by 

SUMO proteases that cleave the protein to expose two terminal glycine residues. 

Activated SUMO is bound by the UBA/AOS1 E1 heterodimer in a reaction that 

consumes ATP. The E2 Ubc9 binds AOS1 and the SUMO molecule is transferred from 

UBA to Ubc9. Ubc9 binds an E3 enzyme that has substrate specificity and facilitates the 

transfer of the SUMO molecule to a lysine residue along the substrate.  
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First, SUMO is bound by the UBA/AOS1 heterodimer and ATP hydrolysis activates the 

SUMO molecule. Activated SUMO forms a high-energy thioester bond with a cysteine 

residue in the active site of the AOS1 enzyme. AOS1 binds the UBC9 E2 enzyme, and 

SUMO is transferred to the cysteine residue in the active site of UBC9.  Unlike in the 

ubiquitin-proteasome pathway, UBA/AOS1 and UBC9 are the only SUMO-associated E1 

and E2 ligases identified in humans (Pichler et al. 2017). The SUMO-bound UBC9 

protein interacts with one of several E3 enzymes, which have target specificity, and 

facilitates SUMO transfer from UBC9 to the substrate (Pichler et al. 2017). 

 

Post-translational modifications along RAD51 proteins 

Post-translational modifications (PTMs) play a vital role in promoting accurate repair of 

DNA damage and are prominent in the homologous recombination (HR) pathway. The 

six RAD51 paralog proteins are essential for progression of HR, therefore, modifications 

along these proteins are predicted to be required for HR progression. Proteomics analyses 

of the RAD51 proteins identified PTMs along each paralog (Figure 2.10) (Mertins et al. 

2016; Mertins et al. 2013; Kim et al. 2011; Zhou et al. 2013; Somyajit et al. 2013; 

Slupianek et al. 2001; Takizawa et al. 2004; Yata et al. 2014; Yata et al. 2012; Yuan et al. 

1998). Despite these data, limited experiments have been performed under DNA damage 

conditions. Given the prevalence of phosphorylation and ubiquitin modifications in DNA 

damage response, particularly in the HR pathway, and the importance of each paralog in 

promoting accurate DNA repair, it follows that investigation into these modifications is 

necessary.  
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In response to IR, RAD51 activity is regulated by phosphorylation. During S 

phase, phosphorylation along RAD51 is mediated by c-Abl at Tyr54 and Tyr315 (Yuan et 

al. 1998; Chen et al. 1999; Subramanyam et al. 2016; Takizawa et al. 2004). RAD51 is 

activated at the S/G2 junction of the cell cycle by the Chk1-mediated phosphorylation at 

Thr309 to promote HR (Sorensen et al. 2005). At the G2/M checkpoint, phosphorylation 

at Thr13 and Ser14 initiates RAD51 binding with the NBS1 protein to recruit RAD51 to 

the DSB site (Yata et al. 2014).   

RAD51 activity during S phase is regulated by c-Abl-mediated phosphorylation at 

Tyr54 and Tyr315 (Yuan et al. 1998; Chen et al. 1999; Subramanyam et al. 2016; 

Takizawa et al. 2004). These modifications inhibit RAD51 oligomerization and can 

enhance its strand exchange activity (Subramanyam et al. 2016; Alligand et al. 2017). In 

addition to interacting with RAD51, one study identified a direct interaction between 

BCR-Abl and RAD51B, and found that BCR-Abl phosphorylates RAD51B (Slupianek et 

al. 2009).  

The cell cycle checkpoint kinase Chk1 functions during S phase of the cell cycle 

(Arnaudeau, Lundin, and Helleday 2001), and directly interacts with RAD51 in response 

to hydroxyurea (HU)-induced DSBs (Sorensen et al. 2005). Chk1-mediated 

phosphorylation of RAD51 at Thr309 activates the protein and initiates HR (Sorensen et 

al. 2005). Cells deficient for Chk1 have decreased RAD51 foci formation in response to 

HU, and cells expressing a RAD51-T309A mutant that cannot be phosphorylated are 

hypersensitive to DNA damaging agents including HU and thymidylate synthase 

inhibitors (Sorensen et al. 2005; Yang, Waldman, and Wyatt 2012).  
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Figure 2.10. Post-translational modifications along RAD51 proteins. Known 

modifications are shown. Threonine, serine, and tyrosine residues are potential 

phosphorylation sites, and lysine residues are potential ubiquitination, SUMOylation, and 

acetylation sites. Bold indicates modifications identified in response to DNA damage.  
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BRCA2, a known RAD51 binding partner, coordinates the phosphorylation of 

RAD51 at Ser14 by polo-like kinase 1 (PLK1) in response to DNA damage at the G2/M 

junction of the cell cycle (Yata et al. 2014). Phosphorylation at Ser14 in turn initiates 

phosphorylation at Thr13 by casein kinase 2 (CK2), a modification that promotes RAD51 

interaction with NBS1, a core component of the MRN complex (Yata et al. 2012). 

Interaction between RAD51 and NBS1 is important for RAD51 recruitment and binding 

to DNA damage sites (Yata et al. 2014). 

Ubiquitination is another PTM present along RAD51. A novel E3 ubiquitin 

ligase, RFWD3 ubiquitinates RAD51 in response to DSBs induced by mitomycin C 

(MMC) as a mechanism of removing the protein from the single strand overhangs (Inano 

et al. 2017). Inactivation of RFWD3 results in persistent RAD51 foci at the damage site 

and increased cellular sensitivity to MMC. Additionally, RING mutants of RFWD3 are 

defective in promoting RAD51 ubiquitination (Inano et al. 2017).  

In response to IR, XRCC3 activity during S phase is regulated by ATR-mediated 

phosphorylation at Ser225. interaction between RAD51C and XRCC3 is required for this 

modification, and depletion of RAD51C inhibits phosphorylation of XRCC3. This 

modification is dependent on ATM and is necessary for XRCC3-mediated recruitment of 

RAD51 to DSBs (Somyajit et al. 2013).   

All investigations into the PTMs along RAD51 proteins have been performed in 

response IR-induced DSBs, and only limited studies have been performed in the presence 

of other types of damage. RAD51 paralogs, RAD51D specifically, are essential for cell 

survival in response to DNA ICL-inducing agents, yet knowledge about the PTM 

regulation of the paralogs in response to ICLs is limited. Further investigation into PTMs 
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along RAD51 paralogs in response to ICLs and other types of DNA damage will provide 

insight into the regulatory mechanisms of the HR pathway and offers the potential to 

identify new targets for clinical therapies.  

 

Summary 

Accurate repair of DNA double strand breaks is essential for maintaining genomic 

integrity and preventing carcinogenesis. The RAD51 family of proteins are key 

components of the homologous recombination (HR) pathway that functions to recognize 

and repair DNA DSBs induced by ionizing radiation and through the repair of cisplatin-

induced DNA interstrand crosslinks. Post-translational modifications regulate activity of 

repair proteins, particularly in the HR pathway. Phosphorylation of RAD51 at Thr13 and 

Ser14 by polo-like kinase 1 and casein kinase 2, respectively, are essential for promoting 

RAD51 interaction with the NBS1 protein and recruitment of RAD51 to sites of DNA 

damage. Phosphorylation at Tyr54 and Tyr315 along RAD51 by the c-Abl kinase acts as 

a negative regulator of RAD51 activity and prevents hyperrecombination that can also 

lead to detrimental genetic mutations. Ubiquitin modification serves a key regulator of 

HR activity, and RAD51D has been identified as a ubiquitination target of the HR-

associated E3 ubiquitin ligase, RNF138. Both RAD51D and RNF138 are essential for 

cell survival and promoting HR, suggesting that this modification is another key regulator 

of HR activity.  

 Data in Chapter 3 identified regions along RNF138 that mediate its interaction 

with RAD51D and demonstrated that RAD51D is ubiquitinated. The work presented in 

Chapter 4 identifies two essential lysine residues (K235 and K298) along RAD51D that 
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are required for cell survival in response to MMC-induced ICLs and are potential 

ubiquitination sites. The ubiquitin linkage arrangement along RAD51D is determined, 

and the stability of RAD51D in the absence of ubiquitinated lysine residues is 

established. In addition, RAD51D functions downstream of FANCD2 and Ku86 in 

response to mitomycin C-induced interstrand crosslinks. Chapter 5 demonstrates that 

RAD51D is required for maintaining telomere stability in response to 6TG, and the work 

presented in Chapter 6 identifies gene expression differences between Rad51d-proficient 

and Rad51d-deficient primary mouse embryonic fibroblasts as determined by microarray 

and RNA Seq. Together, the data presented in this dissertation will help to establish how 

RAD51D functions to maintain genome integrity in response to DNA damage, at the 

telomere region of chromosomes, and during embryogenesis. 
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CHAPTER 3 

RNF138 ZINC FINGER MOTIFS MEDIATES ITS INTERACTION WITH RAD51D
2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2
Yard BD, Reilly NM, Bedenbaugh MK, Pittman DL. RNF138 interacts with RAD51D 

and is required for DNA interstrand crosslink repair and maintaining chromosome 

integrity. DNA Repair, 2016, 42: 82 – 93.   
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Preface 

Data presented in Chapter 3 were published in or are in addition to the research article 

entitled “RNF138 Interacts with RAD51D and is Required for DNA Interstrand Crosslink 

Repair and Maintaining Chromosome Integrity” appearing in DNA Repair on April 15, 

2016 (Yard et al. 2016). For this manuscript, I generated the data demonstrating these 

RNF138 splice variants lacking exons 5 and 7 do not interact with RAD51D, and 

provided data showing that RAD51C is not ubiquitinated.  

 

Introduction 

DNA damage repair pathways are regulated by post-translational modifications, and 

ubiquitination events during homologous recombination (HR)-mediated double strand 

break repair are essential for pathway progression (Hodge et al. 2016; Mailand et al. 

2007; Nakada, Yonamine, and Matsuo 2012; Poulsen et al. 2012). Ubiquitin 

modifications activate proteins, recruit downstream proteins to damage sites, and signal 

for proteasomal-mediated protein degradation (Akutsu, Dikic, and Bremm 2016). The 

RAD51 family of proteins – RAD51, RAD51B, RAD51C, RAD51D, XRCC2, and 

XRCC3 – function during HR. Five RAD51 paralogs bind in different combinations: (1) 

RAD51B with RAD51C, (2) RAD51C with RAD51D, (3) RAD51D with XRCC2, and 

(4) RAD51C with XRCC3 (Dosanjh et al. 1998; Liu et al. 1998; Braybrooke et al. 2000; 

Schild et al. 2000). Immunoprecipitation of human RAD51 paralogs identified two 

distinct complex formations: RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) and 

RAD51C-XRCC3 (CX3) (Masson et al. 2001; Rajesh et al. 2009).  
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A yeast-two-hybrid (Y2H) screen was performed in the Pittman laboratory to 

identify additional RAD51D interacting partners (Yard 2011; Yard et al. 2016). The 

screen identified 42 clones, two of which – RNF138 and UBC13 – participate in the 

ubiquitin proteasome pathway (Hodge et al. 2016; Kim and D'Andrea 2012; Nakada 

2016; Nakada, Yonamine, and Matsuo 2012; van Twest et al. 2017; Xie et al. 2015). 

Neither RNF138 nor UBC13 interact with RAD51C or XRCC2, indicating that this 

interaction is unique to RAD51D (Yard 2011).  

RNF138 belongs to a family of E3 ligases characterized by an N-terminal “really 

interesting new gene” (RING) catalytic domain, three zinc finger (ZF) motifs, and a 

ubiquitin interacting motif (UIM) (Giannini, Gao, and Bijlmakers 2008). 

Immunoprecipitation of over-expressed RAD51D and mutant RNF138 (RNF138-

H36AC39S) demonstrated that the activity of the RING domain is not required for this 

interaction (Yard et al. 2016). Expression analysis of mouse tissue samples identified four 

distinct RNF138 splice variants: full-length, a deletion of exon 5 (RNF138Δ5), a deletion 

of exon 7 (RNF138Δ7), and a variant retaining intron four with a deletion of exon 7 

(RNF138+int4Δ7) (Yard et al. 2016). Expression of the splice variants was similar to 

full-length in all tissue types except testis, in which expression of RNF138Δ5 and 

RNF138Δ7 was higher than full length RNF138. RNF138Δ5 is predicted to encode a 226 

amino acid protein that remains in-frame and retains all five domains, and RNF138Δ7 is 

predicted to encode a 209 amino acid protein that lacks one of the C2H2 ZF domains. 

Y2H analysis demonstrated that the regions encoded by exon 5 and exon 7 of RNF138 

are necessary for interaction with RAD51D.  
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RAD51D forms a complex with other RAD51 paralogs, including RAD51C, and 

proteomics studies have indicated that RAD51C could also be ubiquitinated (Mertins et 

al. 2013). To determine whether RAD51C is modified with ubiquitin, in vivo 

ubiquitination assays were performed using both RAD51D and RAD51C. Minimal 

ubiquitin signal was detected along RAD51C, suggesting that RAD51D is the primary 

target for this modification. 

 

Materials and Methods 

Yeast two hybrid assay 

The cDNA of two RNF138 splice variants, one lacking exon 5 (MmRnf138Δ5) and one 

lacking exon 7 (MmRnf138Δ7), were cloned into the BamHI and EcoRI restriction 

enzyme sites of pGADT7 and pGBKT7 yeast expression vectors. Previously described 

RAD51D wild-type yeast expression constructs were used for this study (Yard et al. 

2016). The AH109 yeast strain was used for all experiments described here, and the 

genotype is as follows: MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, 

LYS2::GAL1UAS-GAL1TATA-HIS3, MEL1, GAL2UAS-GAL2TATA-ADE2, 

URA3::MEL1UASMEL1TATA-lacZ (Clontech Laboratories 2009). Each RNF138 splice 

variant was co-transformed with wild-type RAD51D using the Frozen EZ Yeast 

Transformation II kit (Zymo Research) per manufacturer’s instructions (Schild et al. 

2000). The strength of protein interactions was quantified using a liquid β-galactosidase 

assay (Serebriiskii and Golemis 2000; Gruver et al. 2009). The ortho-Nitrophenyl-β-

galactoside (ONPG) substrate is added to yeast cell extracts that express the bait and prey 

proteins. Direct interaction between the two proteins initiates expression of the LacZ gene 
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which encodes the β-galactosidase protein. This enzyme catalyzes the hydrolysis of the 

ONPG substrate and produces two products: galactoside and ortho-Nitrophenol (ONP). 

Release of ONP produces a yellow color that was measured using a spectrophotometer 

(Beckman, DU 650). The absorbance of ONP was correlated to the strength of the 

interaction using the following equation: 

𝜷 − 𝒈𝒂𝒍𝒂𝒄𝒕𝒐𝒔𝒊𝒅𝒂𝒔𝒆 𝒖𝒏𝒊𝒕𝒔 =  
(𝟏𝟎𝟎𝟎 ∗ 𝑶𝑫𝟒𝟐𝟎)

(𝒕 ∗ 𝑽 ∗ 𝑶𝑫𝟔𝟎𝟎)
 

where OD420 is the absorbance of the ONP solution, t is the reaction time, V is the total 

volume of the yeast liquid culture, and OD600 is the absorbance of the yeast liquid culture.  

Immunoprecipitations  

Plasmids containing Myc-tagged RAD51D or RAD51C, and HA-tagged ubiquitin were 

co-transfected into HeLa cells. Cells were treated with 25 μM MG132 (Sigma) 4 h prior 

to harvesting. Whole cell extracts were prepared after 24 h using 1X Cell Lysis Buffer 

(20 mM Tris, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM PMSF, 1% TritonX-

100) containing a protease inhibitor cocktail (Complete Mini; Roche Life Sciences). 

Three to five hundred micrograms of total protein was incubated with anti-myc magnetic 

beads (9E10; Thermo-Scientific) for 16 h at 4°C with gentle rocking in 1X Cell Lysis 

Buffer. Precipitated proteins were washed 3 times with 1X Cell Lysis Buffer, eluted by 

boiling in Laemmli buffer for 10 min, and resolved on 4–20% SDS-PAGE (Bio-Rad).  

Immunoblotting  

Western blot analysis was performed using mouse monoclonal anti-HA (3F10; Roche) or 

mouse monoclonal anti-Myc (9E10; Santa Cruz Biotechnology) primary antibodies. 
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Primary antibody incubations were followed by incubation with the appropriate species-

specific IRDye 800CW secondary antibody (Licor). Detection of Myc-tagged RAD51D 

and RAD51C, and HA-tagged ubiquitin was performed using the Licor Odyssey Sa 

Imaging System, and densitometry measurements were performed using Licor Image 

Studio software (v4.0). 

 

Results 

Interaction between RAD51D and RNF138 splice variants 

To date, a crystal structure of RNF138 has not been produced, therefore, a three-

dimensional predicted structure was generated using the I-TASSER prediction program 

(Yang et al. 2015; Yang and Zhang 2015). This software implements a hierarchical 

approach to identify template proteins from the Protein Data Bank (PDB) using a 

multiple threading approach. Iterative template fragment assembly simulations produced 

full-length atomic models and threading the models through the protein functional 

database BioLIP derived functional predictions. Full-length RNF138 is predicted to have 

a linear conformation with the RING domain at the N-terminal, followed by the ZF 

motifs in the middle of the protein, and the UIM at the end (Figure 3.1A). The predicted 

structure for the RNF138Δ5 splice variant adopts a circular conformation that appears to 

disrupt formation of the ZF motifs (Figure 3.1B). The RNF138Δ7 predicted structure 

maintains a linear conformation similar to full-length but lacks one of the C2H2 ZF 

motifs (Figure 3.1C).   

Yeast-two-hybrid (Y2H) was performed using RNF138 splice variants with a 

deletion of either exon 5 (Rnf138Δ5) or exon 7 (Rnf138Δ7) (Figure 3.2A) fused with the 
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GAL4 DNA binding domain (DBD) or the GAL4 activation domain (AD). Two wild-

type RAD51D constructs, one fused with the DBD and one fused with the AD were used. 

RNF138-DBD splice variants were co-transformed with RAD51D-AD constructs, and 

RNF138-AD variants were co-transformed with RAD51D-DBD constructs into the 

AH109 yeast strain. RNF138Δ5 and RNF138Δ7 fused with DBD displayed a 7- and 2-

fold decrease in the level of interaction with RAD51D-AD compared to full-length 

RNF138, respectively. Both RNF138Δ5 and RNF138Δ7 fused with the AD displayed a 

5-fold decrease in the level of interaction with RAD51D-DBD compared with RNF138-

full length (Figure 3.2B).  

RAD51C is not ubiquitinated 

RAD51D ubiquitination is mediated, at least in part, by RNF138, and this modification 

was previously observed when RAD51D was co-expressed with RNF138 and detection 

was performed using x-ray film (Yard et al. 2016). Here, using the Licor Odyssey system, 

ubiquitination of RAD51D can now be detected even when RNF138 is not co-transfected 

(Figure 3.3A). Ubiquitination of the Myc-RAD51D protein was also confirmed using an 

antibody against ubiquitin (Figure 3.3A; lower blot).  

RAD51D directly interacts with two other RAD51 paralogs, RAD51C and 

XRCC2, to form the BCDX2 complex (Rajesh et al. 2009). Although RNF138 is not 

known to directly interact with either protein (Yard et al. 2016), RAD51C or XRCC2 

could still be ubiquitinated by other E3 ligases or by RNF138 via its interaction with 

RAD51D. In fact, proteomics studies have identified seven lysine residues along 

RAD51C as potential ubiquitination sites (Kim et al. 2011; Mertins et al. 2013). To 

determine if RAD51C is ubiquitinated, Myc-tagged RAD51C was co-expressed in HeLa 
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cells with HA-tagged ubiquitin. Ubiquitin signal intensity along Myc-RAD51D was 

nearly 3-fold higher than Myc-RAD51C (Figure 3.3B). These data suggest that RAD51C 

is not ubiquitinated under these conditions. 

 

Discussion 

The RAD51 proteins are essential components of the homologous recombination (HR) 

pathway, and the fourth member, RAD51D, is required for cell survival in response to 

ionizing radiation (IR) and DNA interstrand crosslinks (ICLs) (Gruver et al. 2005). A 

yeast-two-hybrid (Y2H) screen identified a direct interaction with the E3 ubiquitin ligase 

RNF138 (Yard et al. 2016). Four distinct RNF138 splice variants – full-length, a deletion 

of exon 5 (RNF138Δ5), a deletion of exon 7 (RNF138Δ7), and a variant retaining intron 

four and a deletion of exon 7 (RNF138+int4Δ7) – have been identified in mouse tissues 

(Yard et al. 2016). Y2H analysis of two variants (RN138Δ5 and RNF138Δ7) 

demonstrated that the regions encoded by these exons mediate the interaction between 

RNF138 and RAD51D.  

 RNF138 is required for resistance in response to mitomycin C-induced interstrand 

crosslinks (ICLs), and loss of RNF138 diminished RAD51 localization (Yard et al. 

2016).  Ubiquitination is a regulatory mechanism of DNA repair, and RNF138 interaction 

with RAD51D suggests that this modification may regulate RAD51D function during 

HR-mediated repair. The stability of RAD51D was increased when RNF138 expression 

was suppressed by siRNA, demonstrating that RAD51D ubiquitination is mediated by 

RNF138, and that this modification targets the protein for proteasomal degradation (Yard 

et al. 2016). Given that both RAD51D and RNF138 are required for resistance to 
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mitomycin C (MMC) and for RAD51 recruitment, I propose that ubiquitination of 

RAD51D by RNF138 plays a role in promoting RAD51-mediated HR DNA damage 

repair.  

 This modification occurs along lysines, and identification of residues essential for 

RAD51D function may provide insight into ubiquitination sites along the protein. In 

conclusion, the data presented in Chapter 3 and published in DNA Repair (Yard et al. 

2016) provide evidence for RAD51D ubiquitination promoting ICL repair and follow-up 

investigations into specific lysines along RAD51D required for this function are 

discussed in Chapter 4.  
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Figure 3.1. Predicted structure of the RNF138 E3 ubiquitin ligase protein. The iTASSER 

protein structure prediction software (Yang et al. 2015; Yang and Zhang 2015) was used 

to generate structures of (A) RNF138-full length, (B) RNF138Δ5, and (C) RNF138Δ7. 

(A) This ligase contains a really interesting new gene (RING) domain (orange), three zinc 

finger motifs (red, green, purple), and a ubiquitin interacting motif (blue). (B) This 

protein product maintains the RING domain and UIM. (C) This protein product maintains 

the RING domain, the C2HC ZF motif, one of the C2H2 ZF motifs, and the UIM.  
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Figure 3.2. (A) Summary of Mus musculus Rnf138 splice variants. The eight exons of 

Rnf138 are displayed as numbered boxes drawn relative to base pair length. The full-

length Rnf138 mRNA transcript is shown along the top, and the alternatively spliced 

transcripts are displayed below. Note the bold lines indicating the splice sites. Predicted 

translation products are displayed beneath the transcripts. Open gray boxes mark 

sequence corresponding to the indicated functional domain. Abbreviations: ZF-zinc 

finger, UIM-ubiquitin interaction motif, nt-nucleotide, aa-amino acid. (B) Yeast two-

hybrid analysis of RNF138 splice variants and full-length RAD51D. Data represent mean 

+/− SEM from three independent experiments performed in triplicate and ** indicates p < 

0.01. 
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Figure 3.3. Detection of RAD51D ubiquitination in the absence of over-expressed 

RNF138 and in the presence of MG132. (A) HeLa cells were transfected with Myc-

RAD51D, HA-Ub-WT, or both and treated with 25 μM MG132. The top blot represents 

anti-HA antibody and the lower blot represents anti-ubiquitin. (Note the lower protein 

concentration in lane 2 of the anti-Ub blot). Heavy and light chains from the anti-Myc 

beads were detected with the anti-mouse secondary antibody in the lower blot. (B) 

RAD51C and RAD51D ubiquitination was detected by transfecting HeLa cells with 

either Myc-RAD51C or Myc-RAD51D and HA-Ub-WT. Densitometry measurements 

were performed using LiCor Image Studio software (v4.0). The anti-HA signal was 

normalized to the anti-Myc signal for each corresponding sample. The ratio of anti-HA 

signal between Myc-RAD51D and Myc-RAD51C is shown beneath the blot.  



www.manaraa.com

54 

 

 

 

CHAPTER 4 

RAD51D LYSINE RESIDUES 235 AND 298 ARE REQUIRED FOR DNA 

INTERSTRAND CROSSLINK REPAIR  
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Abstract 

RAD51 proteins are essential components of the homologous recombination (HR) 

pathway that repairs DNA double strand breaks (DSBs), which can be induced directly 

by radiation sources or generated during the repair of DNA interstrand crosslinks (ICLs). 

Deletion of the Rad51d HR gene confers increased cellular sensitivity to the ICL-

inducing agent mitomycin C (MMC). Previously, a direct interaction between RAD51D 

and the RNF138 E3 ubiquitin ligase was identified. RNF138 promoted RAD51D 

ubiquitination, a post-translational modification that occurs primarily along lysine 

residues, and loss of RNF138 increased RAD51D protein stability. In this study, the 

lysine residues along RAD51D that are required for protein function and are potential 

ubiquitin modification sites were identified. Arginine substitution mutations were 

introduced at each lysine position along RAD51D, and complementation assays were 

performed using Rad51d-deficient mouse embryonic fibroblasts grown in the presence of 

MMC. Lysine residues 235 (K235R) and 298 (K298R) were essential for ICL repair, but 

not for interaction with RAD51C, XRCC2, or RNF138 as measured by the yeast-two-

hybrid assay. Stability of a lysine-null (K0) mutant was 3-fold higher than wild-type, and 

K235R and K298R protein stability was 2 to 3-fold higher compared with wild-type 

RAD51D. Ubiquitination assays identified a 3-ubiquitin modification present along the 

wild-type but not K0. Finally, neither K235 nor K298 were required for homology-

directed repair following SceI-induced DSBs. Overall, these data suggest that K235 and 

K298 along RAD51D are required for homologous recombination-mediated repair of 

DNA interstrand crosslinks. 
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Introduction 

Ovarian cancer is the deadliest gynecological cancer (Kuschel et al. 2002; Levy-Lahad et 

al. 2001; Loveday et al. 2011; Loveday et al. 2012; Meindl et al. 2010; Pelttari et al. 

2011; Thompson et al. 2012). Mutations in the RAD51 gene family increase risk for 

breast and ovarian cancer (Coulet et al. 2013; Kraus et al. 2017; Loveday et al. 2011; 

Meindl et al. 2010; Pelttari et al. 2011; Song et al. 2015; Thompson et al. 2013), and the 

proteins encoded by these genes function during homologous recombination (HR) 

mediated repair of DNA double strand breaks (DSBs) and interstrand crosslinks (ICLs). 

Mutations in repair genes also confer increased sensitivity to chemotherapy agents, such 

as platinum-based drugs (Pennington et al. 2014; Minckwitz et al. 2014; Topp et al. 

2014). Cisplatin and mitomycin C (MMC), commonly used treatments for late stage 

ovarian cancer, and generate DNA intra- and interstrand crosslinks (Dasari and 

Tchounwou 2014).  

Interstrand crosslinks result in a covalent linkage between two complementary 

DNA strands that can disrupt replication and transcription (Zou, Van Houten, and Farrell 

1994). During the S/G2 stages of the cell cycle, Fanconi Anemia (FA) and HR proteins 

repair ICL damage (Michl, Zimmer, and Tarsounas 2016). A crosslink is first recognized 

by the FA core complex, which binds to one of the DNA strands on either side of the ICL 

lesion. Recruitment and ubiquitination of the FANCD2/FANCI heterodimer initiates 

cleavage of the DNA strand, producing a DSB. Removal of the FANCD2/FANCI 

complex allows for recognition and binding of HR proteins that use the complementary 

DNA strand as a homologous template to repair the DSB (Kim and D'Andrea 2012).  
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Post-translational modifications (PTMs), such as ubiquitination, promote activity 

of DNA repair pathways (Doil et al. 2009; Gibbs-Seymour et al. 2015; Mailand et al. 

2007; Panier and Durocher 2009; Kim and D'Andrea 2012; Hodge et al. 2016). Three 

recent studies identified an E3 ubiquitin ligase that promotes HR-mediated DSB repair: 

RNF138 (Ismail et al. 2015; Schmidt et al. 2015; Yard et al. 2016). In response to IR, 

RNF138 promotes ubiquitination of the NHEJ protein Ku80 and targets it for 

proteasomal degradation, removing NHEJ proteins from the damage site and allowing 

HR-mediated repair (Ismail et al. 2015). RNF138 also ubiquitinates the exonuclease CtIP 

to promote its end-resection activity during the early steps of HR (Schmidt et al. 2015).  

Furthermore, depletion of RNF138 in mouse embryonic fibroblasts (MEFs) significantly 

increase sensitivity to the ICL-inducing agent MMC and decreases RAD51 localization 

to ICL damage (Yard et al. 2016).  

 As discussed in Chapter 3, RNF138 ubiquitinates RAD51D and signals for its 

degradation via the proteasome (Yard et al. 2016). Ubiquitin modification occurs at 

lysine residues along a target protein (Akutsu, Dikic, and Bremm 2016; Swatek and 

Komander 2016), and there are thirteen lysine residues along the Mus musculus RAD51D 

protein. In this study, single point mutations were generated in MmRad51d lysine codons 

to introduce arginine at those residues. Substitution of two residues – K235R and K298R 

– along RAD51D conferred sensitivity to MMC but did not affect protein interaction 

between RAD51D and RAD51C, XRCC2, or RNF138 by yeast-two-hybrid. Stability of a 

lysine-null mutant (K0) protein was three times higher than wild-type RAD51D, and 

stability of K235R and K298R was increased 2- and 3-fold, respectively. The K0 mutant 

includes arginine substitution at K113, a residue in the conserved Walker Box A ATPase 
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motif. Substitution at this residue eliminates catalytic activity of the protein (Gruver et al. 

2005), therefore, the K0 mutant is predicted to be catalytically inactive.  In vivo 

ubiquitination assays demonstrated that a band corresponding to three ubiquitin 

molecules was present in wild-type, but not K0 samples, suggesting a short ubiquitin 

chain along the protein is no longer present. Foci formation following MMC treatment 

demonstrated that RAD51D acts downstream of FANCD2 and Ku86, and upstream of 

RAD51 in response to MMC. Furthermore, homology-directed repair assays 

demonstrated that neither K235 nor K298 is required for repair of SceI induced DSBs. 

Overall, these data suggest RAD51D ubiquitination at K235 and K298 is required for 

repair of DNA interstrand crosslinks.  

 

Materials and Methods 

Site-directed mutagenesis 

Lysine to arginine substitution point mutations were introduced by PCR-based site-

directed mutagenesis using the Mus musculus Rad51d cDNA cloned into the pUC19 

expression vector (New England BioLabs) (Smiraldo et al. 2005). The primer sequences 

used are listed in Table 4.1. Each mutation was individually generated to produce single 

lysine to arginine amino acid substitutions. A lysine-null RAD51D (K0) construct was 

generated by changing all lysine codons to arginine. A RAD51D-Cpeptide mutant 

construct representing amino acids 225 to 329 was generated by PCR amplification of the 

MmRad51d wild-type cDNA using the following primers: RAD51D-CpepKpnI Forward 

and RAD51D-CpepBclI Reverse (Table 4.1). DNA sequencing (Eton Bioscience) 

confirmed all clones and base substitutions. 
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Complementation Assays 

Each individual RAD51D lysine to arginine mutant construct was cloned into the 

pcDNA3.1 mammalian expression vector (Invitrogen) containing either the N-terminal 

Myc or HA epitope tags at the KpnI and BamHI sites. Rad51d-deficient (Rad51d
-/-

Trp53
-

/-
) mouse embryonic fibroblasts (MEFs) (Smiraldo et al. 2005) were maintained at 37°C 

with 5% CO2 in Dulbecco’s Modified Eagle’s Medium (DMEM; Hyclone) supplemented 

with 10% fetal bovine serum (Hyclone), 1% penicillin/streptomycin, and 1% glutamine.  

Rad51d-deficient MEFs were transfected with Myc-RAD51D constructs using 

Lipofectamine LTX Plus reagent (Thermo Fisher). Twenty-four hours following 

transfection, cells were divided evenly between two 150 mm dishes. Selection was 

performed using 200 ug/mL hygromycin B (Sigma), and half of the plates were treated 

with 4 ng/mL mitomycin C as previously described (Gruver et al. 2009). Media was 

replaced every 3 days for 14 days following initiation of treatment, and both hygromycin 

B selection and MMC treatment were maintained for the duration of the experiment. 

Following treatment, the plates were rinsed with 1X PBS, fixed with methanol, and 

colonies stained with Giemsa. Percent resistance was calculated by dividing the total 

number of colonies surviving selection with MMC by the number of colonies that grew in 

the presence of hygromycin B alone.  

Protein localization 

To generate enhanced green fluorescent protein (EGFP) fusions of the lysine to arginine 

mutants, each construct was cloned into the KpnI and BamHI sites of the pEGFP-C1 

vector (Clontech). EGFP-RAD51D fusion constructs were transiently expressed in 

Rad51d-deficient MEFs grown on glass coverslips as described (Smiraldo et al. 2005). 
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Twenty-four hours post-transfection, the coverslips were washed with 1X PBS, fixed 

with 4% paraformaldehyde for 20 minutes at room temperature, and permeabilized with 

0.3% Triton-X 100 for 5 minutes. The coverslips were mounted on glass slides with 

Prolong Gold + DAPI mounting agent (Life Technologies). Slides were viewed using an 

Evos fluorescent microscope and images captured using a 60x oil immersion objective.  

Yeast-two hybrid assays 

Each RAD51D lysine construct was cloned into pGADT7 and PGBKT7 (Clontech) at the 

EcoRI and BamHI restriction enzyme sites. Transformations into the AH109 yeast strain 

was performed using the Frozen EZ Yeast Transformation II kit (Zymo Research) per 

manufacturer’s instructions. Liquid β-galactosidase assays were performed using ortho-

nitrophenyl-β-galactopyranoside (ONPG; Sigma) as previously described (Gruver et al. 

2009).  

Immunoprecipitation and in vivo ubiquitination assays 

HEK293T and HeLa cells were transfected with Myc-RAD51D or EGFP-RAD51D-Cep 

and HA-Ubiquitin constructs using TransIT-LTI reagent (Mirus Bio) per manufacturer’s 

instructions. Four hours prior to harvesting, cells were treated with 25 µM MG132 

(Selleckchem). Twenty-four hours after transfection, the cells were harvested, and the 

proteins were extracted using 1X Cell Lysis Buffer (20 mM Tris, 150 mM NaCl, 1 mM 

EDTA, 1 mM EGTA, 1 mM PMSF, 1% TritonX-100) containing a protease inhibitor 

cocktail (Thermo Scientific). For protein stability experiments, cycloheximide (Sigma) 

was added to a final concentration of 10 μg/mL for the indicated times. Three hundred 

micrograms of whole cell extract were incubated with anti-Myc magnetic beads (9E10; 
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Thermo-Scientific) or anti-GFP magnetic beads (Chromotek) for 16 h at 4C with gentle 

rocking. Precipitated proteins were washed 3 times with dilution buffer (10 mM Tris/Cl, 

150 mM NaCl, 0.5 mM EDTA, protease inhibitor cocktail), eluted by boiling in 3X SDS-

PAGE buffer (187.5 mM Tris-HCl, 6% w/v SDS, 30% glycerol, 150 mM DTT, 0.03% 

bromophenol blue) for 7 minutes, and resolved on a 4 - 20% SDS-PAGE (Bio-Rad).  

For western blot analysis, primary anti-Myc (9E10; Santa Cruz) mouse 

polyclonal, anti-Myc (A-14; Santa Cruz) rabbit polyclonal, anti-HA (3F10; Roche) rat 

polyclonal, anti-β-tubulin (PA5-16863; Invitrogen) rabbit monoclonal, and anti-GFP 

(SAB4301138; Sigma) rabbit monoclonal antibodies were used. Primary antibody 

incubations were followed by incubation with the appropriate species-specific IRDye 

800CW secondary antibody (Licor).  Detection was performed using the Licor Odyssey 

Sa Imaging System, and densitometry measurements were performed using Licor Image 

Studio software (v4.0). 

Immunofluorescence 

Rad51d-proficient and -deficient MEFs were seeded at 3 x 10
5
 cells per well on glass 

coverslips in a 6-well dish. Twelve hours after plating, the cells were treated with either 

200 ng/mL (IC50 Rad51d-proficient) or 2 ng/mL (IC50 Rad51d-deficient) MMC. Twenty- 

hours after initiation of treatment, the coverslips were washed with 1X PBS, pre-

extracted with 0.5% Triton-X 100 for 4 minutes, fixed with 4% paraformaldehyde for 20 

minutes at room temperature, and permeabilized with 0.3% Triton-X 100 for 5 minutes. 

To block, coverslips were incubated in 5% milk/PBS for 1 hour at room temperature, 

then washed with 1X PBS three times. Primary antibody incubation was performed in 5% 

milk/PBS at indicated dilutions in a humid chamber overnight at 4°C. After the primary 
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incubation, the cells were washed with 1X PBS. Secondary antibody incubations were 

performed in 5% milk/PBS at the indicated dilutions in a humid chamber for 1 hour at 

room temperature. The cells were then washed with 1X PBS, and the coverslips were 

mounted on glass slides with Prolong Gold + DAPI mounting agent (Life Technologies).  

For immunofluorescence, primary anti-FANCD2 (ab2187; Abcam; 1:200) rabbit 

polyclonal, anti-Ku86 (C-20; Santa Cruz; 1:00) goat polyclonal, anti-RAD51 (H-92; 

Santa Cruz; 1:100) rabbit polyclonal, and secondary antibodies AlexaFluor488 (Sigma; 

1:1000) and AlexFluor688 (Sigma; 1:200) were used. Slides were viewed using an Evos 

fluorescent microscope and images captured using a 60x oil lens objective. Foci per 

nuclei were scored for each cell line, and nuclei with foci n ≥ 5 were scored as positive. A 

minimum of 200 nuclei were scored for each treatment.  

Homology directed repair assay 

For recombination measurements, 5 x 10
6
 HeLa DRGFP cells (Pierce et al. 1999) were 

co-transfected with 50 ug pCBASce (Rajesh, Baker, et al. 2011) and 25 ug Myc-

RAD51D-WT, Myc-RAD51D-K0, Myc-RAD51D-K235R, or Myc-RAD51D-K298R 

plasmid by electroporation (BTX Harvard Apparatus ECM 630 Electro Cell Manipulator) 

using the following settings: low voltage, 230V, 500 μF. The medium was replaced every 

twenty-four hours following transfection. Forty-eight hours after SceI transfection, the 

cells were viewed on an Evos fluorescent microscope, and images were captured using a 

40X objective. Cells were collected and resuspended in 1X PBS for GFP expression 

analysis using an FC 500 flow cytometer and quantitated using CXP analysis software 

(Beckman Coulter) (Yang, Waldman, and Wyatt 2012). 
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Results 

Complementation screening of RAD51D lysine to arginine mutants 

Our previous work demonstrated that RAD51D is ubiquitinated by the E3 ligase RNF138 

(Yard et al. 2016), a modification that occurs at lysine residues (Zee and Garcia 2012). 

The Mus musculus RAD51D protein has thirteen lysine residues, ten of which are 

conserved with Homo sapiens RAD51D (Figure 4.1). Sequence identity between the 

RAD51 paralogs is approximately 40%, and seven of the lysine residues along 

MmRAD51D are conserved with another paralog (Figure 4.2). To determine which 

lysine residues are required for RAD51D function during DNA damage repair, site-

directed mutagenesis was performed to individually substitute each lysine codon with an 

arginine, and a lysine-null (K0) was generated by changing all lysine residues to 

arginines (Figure 4.3A). The RAD51D constructs are referenced by each lysine to 

arginine substitution; for example, substitution of lysine 235 and 298 are referred as 

K235R and K298R, respectively.  

Complementation assays were performed to identify the lysine residues essential 

for resistance to DNA interstrand crosslinks (Smiraldo et al. 2005). Each mutant plasmid 

was transiently expressed in Rad51d-deficient mouse embryonic fibroblasts (MEFs). For 

each experiment, transfected populations were equally divided and maintained in either 

the presence of hygromycin B alone or with the addition of the DNA ICL agent 

mitomycin C (MMC) (Figure 4.3B). K0, K235R, and K298R decreased cellular 

resistance to MMC by up to 90% compared to wild-type, and expression of K261R 

decreased cellular resistance by 30%. K24R, K26R, K42R, K48R, and K327R increased 

cellular resistance to MMC between 10 and 20%, K159R and K201R increased by 
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approximately 40%, and K76R and K91R were approximately the same as wild-type. 

Given these data, K235R and K298R were the focus of the subsequent work.  

One potential explanation for increased sensitivity in the absence of either residue 

is that arginine substitution disrupts nuclear localization of the proteins. Using EGFP-

tagged RAD51D constructs, cellular localization of RAD51D was not affected by 

substitution at either K235 or K298 (Figure 4.4).  

K235R and K298R interact with RAD51C, XRCC2, and RNF138 

RAD51D forms a complex with the paralogs RAD51B, RAD51C, and XRCC2 (BCDX) 

through direct interactions with RAD51C and XRCC2 (Masson et al. 2001; Rajesh et al. 

2009). To determine the effects on protein interaction, yeast-two-hybrid analysis was 

performed with each lysine mutant and RAD51C (Figure 4.5A, D) or XRCC2 (Figure 

4.5B, E). Replica plating results suggest that both RAD51C and XRCC2 interact with 

K235R and K298R, but not K0. As demonstrated by ONPG analysis, K235R and K298R 

showed a level of interaction with either RAD51C or XRCC2 similar to wild-type 

RAD51D. Interestingly, interaction between K201R and RAD51C or XRCC2 was 

decreased 3- and 4-fold, respectively. Despite decreased interaction with these paralogs, 

K201R complemented Rad51d-deficiency in the presence of MMC.  

Previous studies demonstrated that RAD51D directly interacts with the E3 

ubiquitin ligase RNF138 (Yard et al. 2016). Replica plating results suggest that RNF138 

interacts with K235R and K298R, but not K0. As demonstrated by ONPG analysis, 

K235R and K298R had a level of interaction with RNF138 similar to wild-type 

RAD51D, and RNF138 interaction with K0 was decreased to background levels (Figure 

4.5C, F). K0 includes arginine substitution at K113 along RAD51D, which was 
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previously shown to be required for interaction between RAD51D and RNF138 (Gruver 

et al. 2005; Yard et al. 2016).  

Increased stability of K0, K235R, and K298R 

To determine if K235 or K298 is a site for degradation specific ubiquitin modification, 

the stability of Myc-tagged RAD51D mutant proteins after treatment with cycloheximide 

(CHX) was measured (Figure 4.6A). Two hours after initiation of CHX block, the 

stability of K0 was 3-fold higher than wild-type (p<0.05), and stability of K235R, and 

K298R were 2-fold and 1.5-fold higher, respectively (p<0.05). Four hours after CHX 

addition, the stability of K0, K235R, and K298R was increased 3-fold, 2-fold, and 2.5-

fold, respectively, compared with wild-type RAD51D (p<0.05). Six hours after CHX 

treatment, the protein levels of K0, K235R, and K298R were similar to wild-type, 

suggesting that degradation of these proteins is delayed, rather than completely 

eliminated. The stability of HA-tagged RAD51D wild-type and K0 proteins were 

consistent with these results (Figure 4.6A; lower blots). 

 The C-terminal region of the RAD51D gene encoding amino acids 225 to 329 

(RAD51D-Cpep) was amplified and fused to the gene sequence for enhanced green 

fluorescent protein. This generated a RAD51D-Cpep-EGFP fusion protein used for 

subsequent experiments. Stability of Cpep-K0, Cpep-K235R, and Cpep-K298R was 

decreased to similar levels as wild-type RAD51D-Cpep 4 hours after initiation of a CHX 

block (Figure 4.6C). This treatment time was selected based on the significant increase in 

protein stability of the full-length K0, K235R, and K298R mutants (Figure 4.6A). These 

data are in contrast with the full-length RAD51D that showed increased stability of the 
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K0, K235R, and K298R compared with wild-type under the same conditions (Figure 

4.6A).   

Ubiquitin modification of K235R and K298R 

Cells expressing K235R and K298R do not complement Rad51d-deficiency in the 

presence of MMC, and these proteins have increased stability compared with wild-type. 

Loss of a ubiquitin modification at either of these residues could account for MMC 

sensitivity. To test this hypothesis, Myc-tagged RAD51D lysine to arginine mutant 

constructs were co-expressed in HEK293T cells with an HA-tagged ubiquitin wild-type 

plasmid. Signal along K0 was still detected even in the absence of lysine residues. 

Interestingly, there appears to be a ubiquitin band in the wild-type, K235R, and K298R 

samples corresponding to approximately 3 ubiquitins (24 kDa increase in molecular 

weight) that is not present in the K0 sample. This suggests that a specific ubiquitin 

modification is lost in the absence of any available lysine residues. Ubiquitin patterns 

along K235R and K298R were similar to wild-type RAD51D (Figure 4.7A). 

Ubiquitination assays of the EGFP-RAD51D-Cpep constructs were performed 

using anti-GFP immunoprecipitation (Figure 4.7B). The absence of ubiquitin signal in the 

EGFP-only sample indicates that EGFP alone is not ubiquitinated in this system. 

Ubiquitin signal was detected along the Cpep-K235R and Cpep-K298R consistent with 

wild-type, indicating that ubiquitin modification occurs along this region of the protein. 

Ubiquitin signal was detected along the Cpep-K0 (no lysine residues available), 

suggesting that this region of RAD51D is still ubiquitinated even in the absence of lysine 

residues. The ubiquitin banding patterns along K0, K235R, and K298R are similar to 

wild-type.  
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Ubiquitin chain linkages along RAD51D 

Ubiquitin has seven lysines that can be used to form polyubiquitin chains, and the residue 

used for the peptide bond is indicative of the function of the modification (Akutsu, Dikic, 

and Bremm 2016; Ohtake and Tsuchiya 2017). For example, polyubiquitin chains formed 

with lysine 48 (K48) signal for degradation via the proteasome and K63-linked chains 

promote DNA damage response (Akutsu, Dikic, and Bremm 2016). To identify ubiquitin 

linkages attached to RAD51D, Myc-tagged RAD51D constructs were co-expressed with 

HA-tagged ubiquitin mutants that had a single lysine residue available for chain 

formation and are referred to by that lysine number (Figure 4.7C). Signal was detected 

when RAD51D was co-expressed with the K48 ubiquitin mutant. These data are 

consistent with previous experiments showing that stability of RAD51D is increased in 

the presence of the MG132 proteasome inhibitor (Yard et al. 2016).  Ubiquitin signal was 

detected along RAD51D in the presence of K6, K11, and K27 ubiquitin mutants, 

indicating that these chain linkages are generated along the RAD51D protein. Decreased 

ubiquitin signal was detected in the RAD51D samples co-expressed with the K0 and K63 

ubiquitin mutants compared with the wild-type ubiquitin mutants. The K0 mutant cannot 

form isopeptide bonds with subsequent ubiquitin molecules and thus acts as a chain 

terminator and a negative control for these experiments. K63 chains are generated in the 

presence of DNA DSBs and the cells used for these experiments were unchallenged with 

DNA damage.  

To determine if RAD51D ubiquitination occurs in response to ICLs induced by 

MMC, ubiquitin signal along RAD51D was detected 12, 16, 20, and 24 h after MMC 

treatment. RAD51D ubiquitination levels were increased compared to no treatment at the 
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16 and 20 h time points and appeared to be highest 16 hours after MMC treatment 

(Figure 4.7D). These preliminary results suggest that ubiquitination of RAD51D 

increases in response to MMC treatment.  

MMC-induced FANCD2 and Ku86 foci formation in Rad51d-deficient cells 

RAD51 is recruited to the sites of ICL damage after the Fanconi Anemia (FA) core 

complex (Kim and D'Andrea 2012), and RAD51D is required for formation of RAD51 

foci in response DSBs (Smiraldo et al. 2005). To determine if RAD51D functions 

downstream of FA proteins, Rad51d-proficient and -deficient MEFs were treated with 

equitoxic doses of MMC. FANCD2, Ku86, and RAD51 foci were detected by 

immunofluorescence 24 h after MMC treatment. Thirty percent of nuclei were positive 

for FANCD2 foci following MMC treatment in both the Rad51d-proficient and -deficient 

cell lines, and the number of positive cells was 2-fold higher than the vehicle treated cells 

(Figure 4.8A). Fifteen percent of nuclei were Ku86 positive in both cells lines following 

MMC treatment, and the number of positive cells was 2-fold higher compared with 

vehicle treated cells (Figure 4.8B). Foci were also detected after forty-eight and seventy-

two hours of treatment (Figure 4.8). RAD51 foci were detected in the Rad51d-proficient, 

but not in the Rad51d-deficient MEFs, demonstrating that RAD51D is required for 

RAD51 foci formation in response to MMC.  

K235 and K298 are not required for DNA double strand break repair 

Complementation assays (Figure 4.3B) demonstrated that K235R and K298R confer 

sensitivity to MMC, suggesting that these residues are essential for RAD51D function in 

response to ICLs. To determine if either lysine is also needed for HR-mediated repair of 
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DSBs, a homology-directed repair assay was performed in cells containing a 

chromosomally integrated DRGFP recombination reporter (HeLa DRGFP) (Pierce et al. 

1999). Expression of the I-SceI endonuclease introduces a DSB in the Sce-GFP gene, and 

repair by HR reconstitutes a functional GFP gene and GFP expression (Figure 4.9A). 

HeLa DRGFP cells were co-transfected with the I-SceI plasmid and wild-type RAD51D, 

K0, K235R, or K298R and allowed to recover for 48 h. GFP positive cells were measured 

by flow cytometry (Figure 4.9B). The percentage of GFP positive cells was 1.5 in the 

untransfected cells and 7.5 in the cells transfected with I-SceI only. Cells in which wild-

type RAD51D was expressed displayed a GFP-positive population of 8.8%. Cells 

transfected with K0 displayed a GFP-positive population of 8.7%, similar to WT 

expressing cells. Expression of K235R and K298R displayed GFP-positive populations 

of 7.9% and 7.1%, respectively. Arginine substitution at K235 and K298 does not 

suppress HR-mediated repair of DSBs in this assay, and these data suggest that these 

residues may be required for RAD51D function specifically in response to ICLs.  

 

Discussion 

DNA interstrand crosslinks occur when two complementary DNA strands become 

covalently linked by endogenous reactive aldehydes or platinum-based drugs. During S 

phase of the cell cycle, Fanconi Anemia (FA), nucleotide excision repair, and 

homologous recombination (HR) proteins act in combination to remove ICLs (Alpi et al. 

2008; Kim and D'Andrea 2012; Knipscheer et al. 2009; Kottemann and Smogorzewska 

2013; Lopez-Martinez, Liang, and Cohn 2016). Post-translational modifications regulate 

DNA repair pathways, and ubiquitination is prominent in both the FA and HR pathways. 
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For example, ubiquitin modification of the FANCD2 and FANCI activate the proteins to 

allow cleavage of the DNA strands flanking an ICL lesion (Kim and D'Andrea 2012; 

Rickman et al. 2015; Liang et al. 2016). This cleavage generates a DNA double strand 

break (DSB) that is recognized and repaired by HR proteins (Kim and D'Andrea 2012). 

During HR-mediated repair of DSBs, the E3 ubiquitin ligase RNF138 ubiquitinates the 

CtIP endonuclease to promote end resection and HR progression (Schmidt et al. 2015).  

We previously demonstrated that loss of RNF138 increases cellular sensitivity to 

ICL agents, reduces RAD51 foci formation after MMC induced damage, and 

ubiquitinates RAD51D (Yard et al. 2016). K113 in the Walker Box A motif of RAD51D 

is also required for cell survival in the presence of MMC (Gruver et al. 2005). In this 

study, we show that three lysine residues – K235, K261, and K298 – are required for 

cellular resistance to MMC. K235 is predicted to be in the BRC Interface region along 

the RAD51D protein, a motif conserved among the RAD51 family members. The BRC 

interface mediates oligomerization between RAD51 monomers (Pellegrini et al. 2002) 

and is a potential interaction platform between RAD51 paralogs. K261 is in the mid-

region and K298 is located towards the C-terminus of the RAD51D protein. Neither 

residue is predicted to be near any known motifs or domains.  

RNF138-mediated ubiquitination of RAD51D promotes its degradation by the 

proteasome (Yard et al. 2016). K235R and K298R did not affect interaction between 

RAD51D and RNF138 but did increase protein stability, suggesting that these residues 

are sites of proteasomal specific ubiquitin modifications. K0 did not interact with 

RNF138, consistent with previous work that demonstrated K113 (which is substituted 

with arginine in K0) is required for this interaction (Yard et al. 2016). Stability of the K0 
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mutant was increased 3-fold compared to wild-type, although the protein was ultimately 

degraded. Increased stability of RAD51D could delay or inhibit DNA damage repair in 

response to MMC and may explain why cells expressing these mutants do not restore 

cellular resistance to MMC.  

RAD51B, RAD51C, RAD51D, and XRCC2 interact to form the BCDX2 

complex, and of these proteins, RAD51D directly interacts with RAD51C and XRCC2 

(Rajesh et al. 2009). Yeast-two-hybrid analysis demonstrated that K235R and K298R 

directly interact with RAD51C and XRCC2. Interestingly, K201R did not interact with 

RAD51C or XRCC2, but complemented the Rad51d-deficiency in the presence of MMC, 

suggesting that the interaction between RAD51C and XRCC2 may not mediate ICL 

repair.  

Ubiquitin signal was detected along the K235R and K298R proteins suggesting 

that RAD51D is still ubiquitinated in the absence of these residues. Ubiquitin addition 

along lysine residues is dependent on the availability of the residues, rather than a 

specific amino acid sequence surrounding the residue and K235 or K298 may not be the 

only residues available for modification. These data suggest that RAD51D is 

ubiquitinated in the absence of lysine 235 or 298 and may indicate additional 

modifications along RAD51D that are required for promoting DNA ICL repair. Ubiquitin 

signal was detected along the K0 mutant, which has no lysines available for modification, 

suggesting that non-lysine ubiquitin modifications may be generated along the RAD51D 

protein.  

Increased protein stability in the presence of K0, K235R, and K298R suggests one 

or more ubiquitin modifications along RAD51D are lost in the absence of lysine residues. 



www.manaraa.com

72 

An alternative method for investigating post-translational modifications along proteins 

using tandem mass spectrometry (MS/MS). This method can be used to identify 

modifications that occur along specific regions of a protein (Parker et al. 2010). MS/MS 

analysis can be performed on the wild-type, K0, K235R, and K298R proteins to identify: 

1. lysine residues that are modified with ubiquitin, and 2: modifications that are lost in 

the absence of lysine residues.  

To identify specific lysine residues that are required for RAD51D function during 

DSB repair, I performed a homology-directed repair assay (Pierce et al. 1999) in the 

presence of K0, K235R, and K298R. Over-expression of wild-type RAD51D increased 

HR capacity by 2.7% compared with the SceI-only control. HR-capacity of cells 

expressing K0, K235R, and K298R was similar to wild-type. 

Here, we show that two lysine residues along RAD51D – K235 and K298 –are 

required for cell survival in response to DNA ICLs. I propose that these residues are the 

sites of degradation specific ubiquitin modifications that remove RAD51D from the site 

of damage to allow RAD51 to bind and promote HR (Figure 4.10). Following, 

recognition of a DNA ICL lesion, FA proteins, specifically the FANCD2/FANCI 

heterodimer, in conjunction with the exonuclease CtIP, function at the site of damage to 

excise the DNA to produce DNA single strand overhangs surrounding a DNA double 

strand break. In response to IR, CtIP directly interacts with the E3 ligase RNF138 to 

promote HR (Schmidt et al. 2015), and a similar mechanism in response to ICLs. In 

addition to binding CtIP, RNF138 directly interacts with RAD51D of the BCDX2 

paralog complex, localizing the complex to the damage. The RAD51 paralog complex 

initiates recruitment of RAD51 to the site of damage (Chun, Buechelmaier, and Powell 
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2013). Finally, to remove the BCDX2 complex, RNF138 mediates ubiquitination of 

RAD51D that targets it to the proteasome for degradation, thereby removing the proteins. 

Displacement of the BCDX2 complex allows RAD51 to bind single strand DNA 

overhangs generated by CtIP and for HR-mediated repair of the ICL damage to progress.  

Future studies will identify lysine residues along RAD51D necessary for RAD51 

foci formation in the presence of MMC. Wild-type RAD51D, K0, K235R, and K298R 

can be expressed in Rad51d-deficient MEFs treated with non-lethal doses of IR and 

RAD51 foci formation measured using immunofluorescence. K0 and K298R are 

predicted to be needed for RAD51 foci formation in response to IR-induced DSBs given 

that HDR is suppressed in the presence of these mutants, and over-expression of K235R 

is not expected to affect RAD51 foci formation. K201R should also be included in these 

experiments, since this mutant had decreased interaction with both RAD51C and XRCC2 

by the yeast-two-hybrid assay, suggesting that the BCDX2 complex does not properly 

form when Lys201 is not present. Loss of RAD51 foci in the presence of K201R would 

suggest that the function of RAD51D differs in response to ICLs versus ‘traditional’ 

DSBs. 
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Table 4.1. Sequences of primers used for MmRad51d cDNA site-directed mutagenesis. 

The lysine to arginine change is indicated by the residue number. The bold and underline 

indicates site of the changed base. Note that the base pair change introduced in the K235 

codon introduces a BamHI restriction enzyme site.  

 

Primer Name                                                   Sequence 

K24R Forward  5’ – CTTCTCAGAGGCCGAAGGATAAAAACAGTGGCAG – 3’ 

K24R Reverse  5’ – CTGCCACTGTTTTTATCCTTCGGCCTCTGAGAAG – 3’ 

K26R Forward  5’ – GGCCGAAAGATAAGAACAGTGGCAGACCTGGC – 3’ 

K26R Reverse  5’ – GCCAGGTCTGCCACTGTTCTTATCTTTCGGCC – 3’ 

K42R Forward 
 5’ – CTTGGAGGAAGTAGCCCAGAGGTGTGGCTTGTCCTAC – 

3’ 

K42R Reverse 
 5’ – GTAGGACAAGCCACACCTCTGGGCTACTTCCTCCAAG – 

3’ 

K48R Forward 
 5’ – 

GAAGTGTGGCTTGTCCTACAGGGCCCTCGTTGCCCTGAG – 

3’ 

K48R Reverse 
 5’ – 

CTCAGGGCAACGAGGGCCCTGTAGGACAAGCCACACTTC – 

3’ 

K76R Forward  5’ – CTCTATGAGGAACTGAGGACTTCCACGGCCATCC – 3’ 

K76R Reverse  5’ – GGATGGCCGTGGAAGTCCTCAGTTCCTCATAGAG – 3’ 

K91R Forward  5’ – CATCGGAAGCCTGGACAGACTACTTGATGCTGGCC – 3’ 

K91R Reverse  5’ – GGCCAGCATCAAGTAGTCTGTCCAGGCTTCCGATG – 3’ 

K113R Forward  5’ – GCCCAGGTAGCGGCAGAACCCAGGTGTGTCTCTG – 3’ 

K113R Reverse  5’ – CAGAGACACACCTGGGTTCTGCCGCTACCTGGGC – 3’ 

K159R Forward  5’ – CCCAAGATGAGGAGAGACAGGCAAGTGCTCTC – 3’ 

K159R Reverse  5’ – GGAGAGCACTTGCCTCTGTCTCCTCATCTTGG – 3’ 

K201R Forward  5’ – CTTCAGGCGCCGTGAGGGTTGTGATTGTGGAC – 3’ 

K201R Reverse  5’ – GTCCACAATCACAACCCTCACGGCGCCTGAAG – 3’ 

K235R Forward  5’ – CCCGAGAGCTCAGGATCCTGGCCCG – 3’ 

K235R Reverse  5’ – CGGGCCAGGATCCTGAGCTCTCGGG – 3’ 

K261R Forward  5’ – GATGGTAGAAGATTCAGACCTGCCCTTGGACGA – 3’ 

K261R Reverse  5’ – GCGTCCAAGGGCAGGTCTGAATCTTCTACCATC – 3’ 

K298R Forward  5’ – CACAGTATGTCTGACCAGGTCTCCCCGCCAGCC – 3’ 

K298R Reverse  5’ – GGCTGGCGGGGAGACCTGGTCAGACATACTGTG – 3’ 

K327R Forward  5’ – CAGAATTACCTGGCAGGCAGACGTGACACTGTTG – 3’ 

K327R Reverse  5’ – CAACAGTGTCACGTCTGCCTGCCAGGTAATTCTG – 3’ 

K24/26R Forward  5’ – CTTCTCAGAGGCCGAAGGATAAGAACAGTGGCAG – 3’ 

K24/26R Reverse  5’ – CTGCCACTGTTCTTATCCTTCGGCCTCTGAGAAG – 3’ 

K42/48R Forward 
 5’ – 

GGAAGTAGCCCAGAGGTGTGGCTTGTCCTACAGGGCCCTC

GTTGCCCTG – 3’  

K42/48R Reverse  5’ – 
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CAGGGCAACGAGGGCCCTGTAGGACAAGCCACACCTCTGG

GCTACTTCC – 3’  

CpepKpnI Forward  5’ – CGTATCGGTACCGCCTTGATGATGCAGCTGG – 3’ 

CpepBclI Reverse  5’ – GTGGCCTTGATCAACTGGACTAGTGGATCCCAATC – 3’ 
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Figure 4.1. Alignment between Homo sapiens RAD51D (328 amino acids) and Mus 

musculus (C57BL/6) RAD51D (329 amino acids) protein sequences. Lysines are 

indicated by the residue number in the Mus musculus sequence and conserved residues 

indicated by bold.  
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Figure 4.2. Conserved lysine residues between Mus musculus RAD51 family members. 

Conserved residues are boxed, and the numbers are in reference to the RAD51D protein.   
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Figure 4.3. Complementation analysis of RAD51D lysine to arginine substituted alleles. 

(A) Box structure of RAD51D illustrating the conserved domains and lysine residues. 

Linker region (green), Walker Box ATPase motifs (red), helix-hairpin-helix motif (grey), 

and BRC interface (yellow). Essential lysine residues 113 (Gruver et al. 2005), 235, and 

298 are bold. (B) Rad51d-deficient MEFs were transfected with RAD51D-lysine to 

arginine mutant constructs, treated with 4 ng/mL MMC. Colonies were counted 14 days 

following treatment. Fold change as compared to wild-type is shown for three 

independent experiments. Error bars represent SEM and * indicates p<0.05 calculated 

using a Student’s T-test. 
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Figure 4.4. Intracellular localization of RAD51D mutant proteins. EGFP-tagged 

RAD51D variants were expressed in Rad51d-deficient mouse embryonic fibroblasts for 

24 h.   
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Figure 4.5. Yeast-two-hybrid protein interaction analysis between RAD51D variants with 

RAD51C, XRCC2, and RNF138. (A-C) Yeast-two-hybrid interactions were tested by 

replica-plating AH109 strains co-transformed with RAD51D variants and (A) RAD51C, 

(B) XRCC2, and (C) RNF138 on selective growth medium lacking leucine and 

tryptophan (left plate) or adenine, histidine, leucine, tryptophan (right plate). (D-F) 

ONPG analysis of the AH109 yeast strain transformed with the indicated RAD51D 

variants and (D) RAD51C full-length, (E) XRCC2 full-length, and (F) RNF138 full-

length expression constructs. Data represent the mean of two independent experiments 

performed in triplicate, error bars represent SEM and * indicates p<0.05 compared to 

wild-type.  
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Figure 4.6. Stability and ubiquitination of RAD51D variants. (A) Myc-RAD51D protein 

levels were assessed 24 hours post-transfection, and 2, 4, and 6 h following the addition 

of cycloheximide (CHX). (B) Densitometry analysis of band intensity was performed 

using Image Studio (Licor version 4.0). Myc-RAD51D band intensity was normalized to 

β-tubulin and graphed as fold-change versus no treatment (NT) for each time point. Data 

represent the mean from two independent experiments, error bars represent SEM, and * 

indicates p<0.05 compared with wild-type. (C) EGFP-RAD51D-Cpep protein levels were 

assessed 4 h following CHX block. EGFP-RAD51D-Cpep band intensity was normalized 

to β-tubulin and fold change versus NT was calculated. Data is representative of two 

independent experiments.  
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Figure 4.7. Ubiquitination signaling along RAD51D. (A) Analysis of RAD51D 

ubiquitination in vivo. Myc-tagged RAD51D variants were co-expressed with HA-tagged 

ubiquitin constructs, and anti-Myc immunoprecipitation was performed. Data are 

representative of three independent experiments. (B) Analysis of ubiquitination of 

RAD51D C-terminus. EGFP-tagged RAD51D variants were co-expressed with HA-

tagged ubiquitin constructs and anti-GFP immunoprecipitation was performed. Data are 

representative of two independent experiments. (C) Myc-tagged RAD51D was co-

expressed with HA-tagged ubiquitin mutant constructs containing single lysine residues 

(indicated by the number). Anti-Myc immunoprecipitation was performed to detect 

ubiquitin chain linkages along RAD51D. (D) HeLa cells were transfected with Myc-

tagged RAD51D wild-type and HA-tagged ubiquitin then treated with 160 ng/mL MMC 

12 h after transfection. RAD51D ubiquitination levels were assessed 12 h, 16 h, 20 h, and 

24 h following MMC treatment.  
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Figure 4.8. Recruitment of FANCD2, Ku86, and RAD51 to MMC-induced DNA 

damage. Rad51d
+/+

Trp53
-/-

 and Rad51d
-/-

Trp53
-/-

 MEFs were treated mitomycin C 

(MMC) for 24 h, 48 h, or 72 h. Equitoxic doses of MMC were used: Rad51d
+/+

Trp53
-/-

 

(200 ng/mL) and Rad51d
-/-

Trp53
-/-

 (2 ng/mL). (A) Representative images of FANCD2, 

Ku86, and RAD51 foci in Rad51d
+/+

Trp53
-/-

 and Rad51d
-/-

Trp53
-/-

 MEFs. (B) 

Quantitation of FANCD2, Ku86, and RAD51 foci in Rad51d
+/+

Trp53
-/-

 and Rad51d
-/-

Trp53
-/-

  MEFs. Nuclei with >5 foci were scored as positive, and a minimum 200 nuclei 

were scored for each timepoint. 
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Figure 4.9. Measurement of HR by reconstitution of GFP fluorescence in HeLa DRGFP 

cells. (A) Homology-directed GFP repair assay (Pierce et al. 1999). A modified GFP 

gene is expressed in HeLa cells (HeLa-DRGFP). This gene encodes the enhanced green 

fluorescent protein (EGFP) expressed from an hCMV enhancer/chicken β-actin promoter 

(arrow) that is modified to contain an I-SceI site and in-frame termination codon. 

Downstream of the SceGFP is iGFP, a 5՛  and 3՛  truncated GFP gene that includes a 
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BcgI restriction enzyme site. HeLa-DRGFP cells are transfected with an I-SceI plasmid 

that encodes the I-SceI enzyme, leading to DNA cleavage within the SceGFP gene and a 

double stranded break. Homologous recombination proteins repair the break using the 

iGFP gene as a homologous template, producing an intact GFP gene. (B) Bar graph 

showing the percentage of GFP positive cells (two experiments performed in triplicate) 

after electroporation with buffer (untreated), Sce-I plasmid only, or each Myc-tagged 

RAD51D construct and Sce-I plasmid. Statistical significance was not achieved using 

one-way ANOVA analysis.  
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Figure 4.10. Proposed model of RAD51D ubiquitination during DNA interstrand 

crosslink repair. (1) An interstrand crosslink inhibits DNA replication, which is 

represented by the arrows showing directions of replication machinery during S phase. 

(2) FANCD2/FANCI mediate strand incision and ‘flip out’ of the ICL lesion. (3) 

Nucleotide excision repair proteins remove the lesion and translesion synthesis proteins 

replicate across the break represented by a red line, producing an intact DNA strand and a 

double strand break (DSB). (4) CtIP interacts with FANCD2/FANCI and excises the 

DNA to produce a single strand overhang (shown on the right side of the double strand 

break). (5) RNF138 binds to CtIP to further promote strand nucleotide excision. (6) The 

BCDX2 complex is localized to the DSB through the interaction between RAD51D and 

RNF138. (7) BCDX2 initiates recruitment of RAD51 to the break. Polyubiquitination of 

RAD51D leads to removal of the proteins from the break and further loading of RAD51. 

Absence of K235 and K298 are proposed to prevent RAD51D polyubiquitination, leading 

to the BCDX2 complex remaining at the damage site and blocking the next step. (8) 

RAD51 filaments coat the single strand overhang to prepare for homology search and 

strand invasion.  
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CHAPTER 5 

THIOPURINE-INDUCED TELOMERIC DAMAGE IN RAD51D-DEFICIENT 

MAMMALIAN CELLS
3 
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Preface 

The data in this Chapter were published in the research article titled “Thiopurine-induced 

mitotic catastrophe in Rad51d-deficient mammalian cells” appearing in Environmental 

and Molecular Mutagenesis on September 25, 2017 (Wyatt et al.). For the purposes of 

this dissertation, the data that I contributed to the manuscript are reported.   

 

Abstract 

Thiopurines are part of a clinical regimen used for the treatment of autoimmune disorders 

and childhood acute lymphoblastic leukemia. However, despite these successes, there are 

also unintended consequences such as therapy-induced cancer in long-term survivors.  

Therefore, a better understanding of cellular responses to thiopurines will lead to 

improved and personalized treatment strategies. RAD51D is an important component of 

homologous recombination (HR), and our previous work established that mammalian 

cells defective for RAD51D are more sensitive to the thiopurine 6-thioguanine (6TG) and 

have dramatically increased numbers of multinucleated cells and chromosome instability. 

6TG is capable of being incorporated into telomeres, and interestingly, RAD51D 

contributes to telomere maintenance, although the precise function of RAD51D at the 

telomeres remains unclear. We sought here to investigate: 1) the activity of RAD51D at 

telomeres, 2) the contribution of RAD51D to protect against 6TG-induced telomere 

damage, and 3) the fates of Rad51d-deficient cells following 6TG treatment. These 

results demonstrate that RAD51D is required for maintaining the telomeric 3´ overhangs. 

As measured by γ-H2AX induction and foci formation, 6TG-induced DNA damage in 

Rad51d-proficient and Rad51d-deficient cells. However, the extent of γ-H2AX telomere 
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localization following 6TG treatment was higher in Rad51d-deficient cells than in 

Rad51d-proficient cells. Using live-cell imaging of 6TG-treated Rad51d-deficient cells, 

two predominant forms of mitotic catastrophe were found to contribute to the formation 

of multinucleated cells, failed division and restitution. Collectively, these findings 

provide a unique window into the role of the RAD51D HR protein during thiopurine 

induction of mitotic catastrophe. 

 

Introduction   

Thiopurines have a long history of clinical usage as immunosuppressants and in cancer 

chemotherapy. Combination therapy including mercaptopurine for childhood acute 

lymphoblastic leukemia (ALL) treatment is an amazing success story, with cure or long-

term remission rates now being greater than 90%. Although the metabolism of 

thiopurines is well known (Krynetski and Evans 2003), surprisingly little is understood 

about the mechanism by which thiopurines induce DNA damage and kill cancer cells. 

When thiopurines are metabolized into active nucleotide forms, the predominant 

mechanism of action is incorporation into DNA (Karran 2006). During replication, the 

thiopurine 6-thioguanine (6TG) causes base mispairing, which is then recognized by 

DNA mismatch repair (MMR) proteins. As part of a poorly understood process, the 

MMR machinery causes DNA strand breaks and invokes homologous recombination 

(HR) mediated repair. Inactivation or loss of MMR thus alleviates killing and 

chromosomal instability caused by thiopurines (Armstrong and Galloway 1997; 

Buermeyer et al. 1999; Rajesh, Litvinchuk, et al. 2011). 
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RAD51D is one of the RAD51 family members indispensable for HR. RAD51D 

is now an established ovarian cancer susceptibility gene (Loveday et al. 2011; Song et al. 

2015; Thompson et al. 2013), and BRCA2-defective cancer cells are also sensitized to 

6TG (Issaeva et al. 2010). Indeed, a recent phase II clinical trial, NCT01432145, explored 

the use of a thiopurine in BRCA2-defective tumors; based upon genetic signatures, 

thiopurines might be used in other HR-defective cancers. At this time, there have been no 

reports of the successful generation of human knockout cells for any of the RAD51 

paralogs. In fact, vertebrate cells deficient in any of the RAD51 paralogs have only been 

generated in mouse embryonic fibroblasts, DT40 avian cells, and Chinese hamster ovary 

cells (Deans et al. 2003; Hinz et al. 2006; Lim and Hasty 1996; Takata et al. 2001; 

Tsuzuki et al. 1996). Even though RNA interference mediated knockdowns of several of 

the RAD51 family members in human cancer cells have been attempted, none achieved a 

substantially reduced expression (e.g., RAD51 by Wyatt and coworkers (Yang, 

Waldman, and Wyatt 2008)). In all cases examined, decreased expression of the RAD51 

paralogs exhibited a similar sensitivity to DNA damaging agents and chromosome 

instability.  

Our previous work established that RAD51D-dependent HR is protective 

downstream of MMR following 6TG treatment (Rajesh, Litvinchuk, et al. 2011). 

Specifically, Rad51d-deficient cells were extremely sensitive to 6TG, and there was a 

substantial increase in the frequency of chromosomal aberrations, particularly radials. 

There was also an increase in multinucleation and chromosomal aneuploidy in the 

Rad51d-deficient cells following 6TG treatment. The loss of MLH1 alleviated these 

phenotypes, demonstrating that the induced damage depends on functional MMR. The 
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roles of RAD51D in genomic maintenance include telomere stability (Tarsounas et al. 

2004). In this regard, it is interesting to note that deoxy-thioguanine nucleotides can be 

incorporated into DNA by telomerase (Marathias, Sawicki, and Bolton 1999; Mender et 

al. 2015; Tendian and Parker 2000). These observations prompted our investigation into 

three related topics. First, we sought to better understand the specific telomeric defect 

associated with Rad51d-deficient cells. Here, it was found that RAD51D is required for 

maintaining the telomeric 3´ overhangs in mammalian cells. Second, we investigated 

telomeric DNA damage caused by 6TG. Chromosome fusions were induced by 6TG, 

some of which contained telomeric labeling. In Rad51d-deficient cells, there was 

increased co-localization of telomere probes with γ-H2AX foci compared to Rad51d-

proficient cells, which further increased upon treatment with 6TG. Lastly, we 

investigated via live cell imaging multi-nucleation induced by 6TG treatment of Rad51d-

deficient cells. Note that, similar to this Rad51d-deficient cellular phenotype, different 

leukemias and lymphomas are known to have increased aneuploidy and multinucleation, 

and also telomere defects (Knecht et al. 2009; Knecht et al. 2010). These findings provide 

a unique window into the formation of multinucleated Rad51d-deficient cells and 

demonstrate that RAD51D provides a protective role against the telomeric DNA damage 

and chromosomal instability that thiopurine treatment causes. 
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Materials and methods 

Cell lines 

Mice heterozygous for a mutation in the Mlh1 gene and mice heterozygous for null-

alleles in Rad51d and Trp53 were crossed to generate murine embryonic fibroblasts 

(MEFs) with different combinations of the three mutated genes (Rajesh, Litvinchuk, et al. 

2011; Rajesh et al. 2010; Smiraldo et al. 2005). Primary and immortalized mouse 

embryonic fibroblasts (MEFs) were grown in DMEM (Corning, Corning, NY USA) 

supplemented with 7.5% fetal bovine serum (Atlanta Biologicals, Flowery Branch, GA 

USA), 7.5% newborn calf serum (GE Life Sciences, Pittsburgh, PA USA ), and 

antibiotics (GE) as previously described (Smiraldo et al. 2005). The following 

immortalized cell lines used for these studies were Rad51d
+/+

Trp53
-/-

 (C53), Rad51d
-/-

Trp53
-/-

 (310), and Rad51d
-/-

Trp53
-/-

Mlh1
-/-

 (T3) cells.  Note that because it was only 

possible to generate immortalized MEFs that were Rad51d
-/-

 on a Trp53
-/-

 background 

(Smiraldo et al. 2005), all work in immortalized MEFs occurred in Trp53
-/-

  cells. For 

simplicity, genotypes of the immortalized MEFs are referred to throughout the 

manuscript as Rad51d or Mlh1 status.   

Western blot analysis of γ-H2AX induction 

Immortalized Rad51d
+/+

, Rad51d
-/-

, and Rad51d
-/-

 Mlh1
-/-

 MEFs were plated in a 6-well 

dish at a concentration of 6 x 10
4
 cells per well and, after 24 h, treated with 50 or 100 nM 

6TG (Sigma Aldrich, St. Louis, MO USA) for 48 and 72 h. Following treatment, cells 

were trypsinized and proteins extracted in 1X cell lysis buffer (20 mM Tris, 150 mM 

NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM PMSF, 1% Triton X-100) containing protease 

inhibitor cocktail (Thermo Fisher, Waltham, MA USA). Thirty micrograms of whole-cell 
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protein extracts were separated using a 4–20% gradient gel (Bio-Rad, Hercules, CA 

USA). Western blot analysis was performed using rabbit polyclonal anti-γ-H2AX (A300-

081, Bethyl, Montgomery, TX USA) or rabbit monoclonal anti-GAPDH (D16H11, Cell 

Signaling, Danvers, MA USA). Primary incubations were followed with species specific 

IR Dye 800CW secondary antibody (Licor, Lincoln, NE USA), and signal detection was 

performed using a Licor Odyssey Sa Imaging System. Quantitative analysis of band 

intensity was performed using Image Studio software (LiCor, version 4.0, Lincoln NE, 

USA). 

Immunofluorescence, telomere staining, and chromosome fusions 

For the detection of γ-H2AX foci and telomere co-localization, sub-confluent cells, 

grown on sterile glass microscope slides or cover slips (VWR, Radnor, PA USA), were 

treated for the indicated times with 6TG.  Following treatment, cells were fixed in 4% 

paraformaldehyde (Affymetrix, Santa Clara, CA USA), permeabilized with a 0.2% Triton 

X-100 solution, and incubated in block solution (5% dry milk in 1x PBS) at room 

temperature. This was followed by incubation with the anti-phospho-Histone H2AX 

(Ser139) mouse monoclonal antibody (1:600; Bethyl) and Oregon Green 488 goat anti-

mouse IgG secondary (1:1000; Molecular Probes (Thermo Fisher), Waltham, MA USA). 

Telomeres were visualized with the peptide nucleic acid probe Cy3-(CCCTAA)3 (PNA 

Bio, Thousand Oaks, CA USA) and chromatin visualized by DAPI (Sigma).   

For studies using primary MEFs to detect γ-H2AX foci, cells containing ≥ 5 

distinct γ-H2AX foci were defined as foci-positive, and the percentage of γ-H2AX foci at 

telomeres was calculated as [(number of γ-H2AX foci at telomeres) / (number of γ-

H2AX foci)]* 100% for each cell. Statistical significance was determined by comparing 
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the mean number of γ-H2AX foci at telomeres per cell for each genotype by ANOVA. 

Follow-up comparisons were performed using the Tukey HSD post hoc test. For studies 

using immortalized MEFs and 6TG-induced damage, cells containing ≥ 10 distinct γ-

H2AX foci were defined as foci-positive, and the percentage of γ-H2AX positive cells 

was calculated as [(number of γ-H2AX positive cells)/(total number of cells)]*100. An 

EvosFL fluorescence microscope (Life Technologies, Carlsbad, CA USA) under a 60X 

oil objective was used to detect γ-H2AX foci. Individual cells were manually scored 

through depth-of-field for foci, identified based upon signal intensity above general 

background staining levels and present within the nucleus as assessed by DAPI staining. 

Metaphase chromosome spreads were prepared as described previously (Smiraldo et al. 

2005). The percent of fusions per chromosome was calculated as [(number of 

fusions)/(number of chromosomes)]*100 per metaphase spread. Statistical significance of 

the experimental data was determined by calculating a z-score. The presence of a 

telomere at a fusion was scored positive, and the percent telomere associated fusions was 

calculated as [(number of telomere positive fusions)/(number of fusions)]*100.  

For detection of telomeres at chromosome fusions, an Axiovert 200 with 

Axiovision (Zeiss, Oberkochen, Germany) fluorescence microscope and 100X oil 

objective was used. For detection of γ-H2AX foci at telomeres, cells were treated as 

described above and the telomere (CCCTAA)3 probe added after γ-H2AX antibody 

incubation. Individual cells were scored for co-localized foci by manual scanning through 

the cellular depth. Cells were scored positive when overlapping signals were observed 

within the nucleus. The number of γ-H2AX foci co-localized with telomere signal was 

counted per nuclei and grouped into three categories: 0 to 2 co-localized foci, 3 to 7 co-
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localized foci, or ≥8 co-localized foci. A minimum of 200 nuclei were counted for each 

genotype and treatment.  

 

Results 

H2AX phosphorylation in response to 6TG treatment 

Induction of γ-H2AX following 6TG treatment was assessed by Western blotting and 

immunofluorescence in immortalized Rad51d-proficient and Rad51d-deficient MEFs 

both in a Trp53-deficient background. Following treatment with 50 nM 6TG, an increase 

of γ-H2AX at 48 and 72 h in the Rad51d-proficient cells and in the Rad51d-deficient 

cells was observed (Figure 5.1A). At this dose and time point of 48 h, quantitation 

revealed that γ-H2AX was not statistically different in Rad51d-proficient and Rad51d-

deficient cells (Figure 5.1B, grey bars, ~2.5 fold). At a 50 nM dose for 72 h, γ-H2AX was 

higher in Rad51d-proficient cells (Figure 5.1B, black bars, 4.5-fold compared to 2.5-fold 

in Rad51d-deficient cells). Treatment with 100 nM 6TG at 48 and 72 hours induced γ-

H2AX to a greater extent than that seen with 50 nM 6TG in all genotypes. No statistically 

significant differences were seen between Rad51d-proficient and Rad51d-deficient cells 

(Figure 5.1C). Our prior work established that in the absence of MLH1, Rad51d-deficient 

cells were less sensitive to killing and chromosomal instability caused by 6TG (Rajesh, 

Litvinchuk, et al. 2011). In the Rad51d
-/-

Mlh1
-/-

 cells, there was no measurable γ-H2AX 

increase in the Rad51d
-/-

Mlh1
-/-

 cells at 50 nM 6TG at either time point (Figure 5.1B). At 

100 nM 6TG, there was a modest induction of γ-H2AX at 100 nM 6TG that was lower 

compared to MLH1-proficient cells regardless of RAD51D status (Figure 5.1C). This is 

consistent with prior observations and further supports idea that the specificity of the 
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clastogenic damage caused by 6TG in the absence of RAD51D depends on functional 

MMR. 

Using immunofluorescence microscopy, nuclei with ten or more γ-H2AX foci 

after 72 h 6TG treatment were scored as positive. The untreated Rad51d-deficient cells 

had a basal level of 15% γ-H2AX foci, whereas no γ-H2AX positive Rad51d-proficient 

cells were observed (Figure 5.1D, white bars), indicative of the extensive genome 

instability associated with Rad51d deficiency. Following treatment with 50 nM 6TG, γ-

H2AX foci positive cells increased to 42% in Rad51d-proficient cells, whereas in 

Rad51d-deficient cells the γ-H2AX foci positivity went from a basal level of 15% to 27% 

(Figure 5.1D, grey bars). This agreed with muted induction of H2AX by 6TG in the 

absence of RAD51D as observed by Western blotting in Figure 5.2B. At the higher dose 

of 100 nM 6TG, the increase in γ-H2AX foci positive cells was similar in both genotypes 

following treatment with 100 nM 6TG (Figure 5.1D, black bars).  In examining the 

Rad51d
-/-

Mlh1
-/-

 cells for γ-H2AX foci, the results were entirely consistent with the 

observations by Western blotting for γ-H2AX in Figure 5.1A and B. Specifically, Figure 

5.2C shows that there was no γ-H2AX foci induction above basal levels at 50 nM 6TG, 

whereas at the higher dose of 100 nM, a statistically significant but lessened induction of 

foci was observed in Rad51d
 -/-

 Mlh1
-/-

 cells compared to the Mlh1
+/+

 cells. 

γH2AX and telomere co-localization in response to 6TG treatment 

To determine whether γ-H2AX foci were associated with telomeres in response to 6TG, 

immortalized MEFs containing >5 γ-H2AX foci were scored after 6TG treatment (Figure 

5.2A). Co-localization of the telomere probe with γ-H2AX foci was grouped into three 

categories (0-2, 3-7, and >8 foci/nuclei, Figure 5.2B). In vehicle treated, a majority (80%) 
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of Rad51d-proficient
 
cells contained between zero and two co-localized foci per nucleus 

(Figure 5.2B, left panel, white portion of bar). In contrast, the majority (>60%) of 

vehicle-treated Rad51d-deficient cells contained three or more co-localized foci per 

nucleus (Figure 5.2B, middle panel, grey portion) indicative of an elevated basal level of 

DNA damage in the absence of RAD51D. In response to 50 nM 6TG treatment, there 

was an induction of co-localized foci per nucleus in Rad51d-proficient cells (Figure 5.2B, 

left panel). In Rad51d-deficient cells, 50 nM 6TG treatment caused a large increase in the 

number of cells with 8+ co-localized foci (Figure 5.3B, middle panel, black portion). The 

higher dose of 100 nM induced an equivalent co-localization in Rad51d-proficient and 

Rad51d-deficient cells (Figure 5.2B, left versus middle panel). These data demonstrate 

that 6TG induced DNA damage as visualized by γ-H2AX at telomeres in a dose-

dependent manner, and at least at the lower dose of 6TG, there is more telomeric damage 

in the absence of RAD51D. Figure 5.2B (right panel) also shows that γ-H2AX 

localization at telomeres is reduced in the absence of MLH1, which is consistent with 

prior work showing that MMR recognition of 6TG damage promotes clastogenic events.  

Previously, we reported a striking induction of radial chromosomes in Rad51d-

deficient cells following 6TG treatment (Rajesh, Litvinchuk, et al. 2011). To determine 

whether chromosome fusions were associated with telomere ends, telomere associated 

fusions were examined in metaphase spreads. As expected, no fusions were detected in 

vehicle treated Rad51d-proficient cells (Table 1; n=1005 scored). After treatment with 50 

or 100 nM 6TG, the number of fusions observed in Rad51d-proficient cells was 

detectable but, as expected, remained low, 0.4 and 0.8%, respectively (Figure 5.3, white 

bars). Too few fusions were observed to clearly determine telomere association (Table 
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5.1). In the vehicle-treated Rad51d-deficient cells, a basal level of 1.1% chromosome 

fusions was detected, which increased to 2.7% and 6.9% following treatment with 50 and 

100 nM 6TG, respectively (Figure 5.3, grey bars, p<0.05). In vehicle-treated Rad51d-

deficient cells, telomere-associated fusions were detectable and do appear to increase 

following 6TG treatment, but the level of fusions regardless of telomere association was 

too few to make any statistically meaningful conclusions (Table 5.1). Lastly, a basal level 

of 0.6% chromosome fusions was detected in the Rad51d
-/-

Mlh1
-/-

 cells, which increased 

by a statistically insignificant amount to 0.9% and 1.6% following treatment with 50 and 

100 nM 6TG, respectively (Figure 5.3, black bars). The data showing that 6TG-induced 

fusions was reduced in Mlh1-deficient cells agreed with prior data from us and others that 

the cytogenetic damage caused by 6TG is dependent at least in part on functional MMR 

(Armstrong and Galloway 1997; Rajesh, Litvinchuk, et al. 2011).  

6-Thioguanine induces multinucleation in Rad51d-deficient cells  

Our prior work demonstrated that treatment with 100 nM 6TG induced aneuploidy and 

multinucleation in Rad51d-deficient cells (Rajesh, Litvinchuk, et al. 2011). Here, the 

induction of multinucleated cells was verified following treatment with a lower dose of 

50 nM 6TG (Figure 5.4). Note also we investigated whether there was an unequal 

distribution of telomeric DNA in the multinucleated cells because of such observations in 

a prior report (Knecht et al. 2009). However, we show that the multinucleated cells 

contained an equal distribution of telomeric DNA in this experimental system (Figure 

5.5). 
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Discussion  

Thiopurines induce a G2 arrest, which presumably prevents cells with damaged DNA 

from entering what would otherwise become an abnormal mitosis (Armstrong and 

Galloway 1997; Buermeyer et al. 1999; Rajesh, Litvinchuk, et al. 2011). However, co-

treatment with caffeine or UCN-01 to block ATM/ATR signaling can override the G2 

arrest, from which cells subsequently enter tetraploid G1 arrest (Rajesh, Litvinchuk, et al. 

2011). In Rad51d-deficient cells, the G2 arrest caused by 6TG was heightened but 

transient; by 72 h, both Rad51d-deficient and Rad51d-proficient cells progressed into 

mitosis, as demonstrated by flow cytometry and phospho-histone H3 staining (Yan et al. 

2004). One implication is that release from this G2 checkpoint does not require the 

resolution/completion of HR, and as such might help explain how cancer cells achieve 

aneuploidy. 6TG treatment induced aneuploidy and multinucleated cells (Rajesh, 

Litvinchuk, et al. 2011). Similar to this Rad51d-deficient cellular phenotype, different 

leukemia and lymphomas are known to have increased aneuploidy and multinucleation. 

One notable example is Reed-Sternberg (RS) cells associated with the pathology of 

Hodgkin’s lymphoma (Mauch 2006). The data presented here demonstrates that 

multinucleation following 6TG treatment occurs via mitotic catastrophe in two ways: 

failed division and restitution. In this system, mitotic catastrophe resulted in 

multinucleated cells that do not undergo apoptosis over the duration of the observations 

here. When treated with the 50 nM 6TG dose, a larger percentage of multinucleated 

Rad51d-deficient cells undergo mitotic catastrophe, which was not observed in cells at 

the 100 nM dose presumably because of the heightened arrest. These results suggest that 

a percentage of cells progress into mitosis at the lower dose of 6TG. In fact, 
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multinucleation and mitotic catastrophe is proposed to be a favored cell death mechanism 

after cell cycle arrest (Castedo et al. 2004; Fragkos and Beard 2011).  

Phosphorylation of Serine-139 on H2AX was measured as a marker of DNA 

damage, and 6TG induced γ-H2AX as measured by Western blotting and 

immunofluorescence in both Rad51d-deficient and Rad51d-proficient cells. It was 

interesting to note that, as detected by Western blotting and immunofluorescence, γ-

H2AX induction seemed muted in the Rad51d-deficient cells at the lower dose of 50 nM. 

It is tempting to speculate that the absence of RAD51D disrupts not just HR repair but 

also associated DNA damage signaling. In fact, a role for the paralog RAD51C in 

checkpoint signaling was demonstrated (Badie et al. 2009). However, note that γ-H2AX 

induction is a highly dynamic process intertwined with yet to be clarified connections 

with the induction of apoptosis and a broader epigenetic reprogramming in cancer (Cook 

et al. 2009; Liu et al. 2016; Lu et al. 2006; Monteiro et al. 2014; Xiao et al. 2009). 

RAD51D, a protein required for HR, was demonstrated previously to have a role 

in telomere protection (Tarsounas et al. 2004).  Loss of RAD51D conferred extensive 

chromosome instability, increased chromosome fusions, and accelerated telomere 

attrition (Smiraldo et al. 2005; Tarsounas et al. 2004).  To further examine the role of 

RAD51D at telomeres, we analyzed the length of the 3´ telomeric overhanging tail in 

Rad51d-deficient MEFs.  Rad51d-deficient cells had an approximately 40 percent 

increase in overhang signal intensity.  These data demonstrate that loss of RAD51D 

affects the length of the 3´ telomeric overhang and suggest that RAD51D is required for 

the regulation of telomere termini. Telomere dysfunction is known to activate DNA 

damage responses, and loss of murine exonuclease 1 (Exo1) alleviated deleterious 
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cellular responses in telomere dysfunctional mice (Schaetzlein et al. 2007). This implies 

that damage disrupting the normal telomere protective mechanisms can expose 

chromosome ends to exonucleolytic processing that can promote chromosome fusions. 

Exo1 deletion also conferred cellular resistance to killing by 6TG (Schaetzlein et al. 

2007), which implicates telomeric damage as a mechanism of action for 6TG. Because 

mammalian telomeres contain a G3 repeat in its canonical sequence, 6TG (as the 

deoxynucleoside triphosphate) can become incorporated into telomeric DNA by 

telomerase (Marathias, Sawicki, and Bolton 1999; Tendian and Parker 2000). It was more 

recently reported that the deoxynucleoside of 6TG can directly damage telomeric DNA, 

and that hTERT positive cells are sensitized to this treatment (Mender et al. 2015). We 

measured the distribution of telomeres in the multinucleated Rad51d-deficient cells 

because prior reports have shown structural telomeric defects and unequal distribution in 

multinucleated Reed-Sternberg cells (Knecht et al. 2009; Knecht et al. 2010). However, 

no unequal telomere distribution was observed in the Rad51d-deficient MEFs after 6TG 

treatment. Collectively, this work contributes to the understanding of 6TG-induced 

telomere damage and the negative consequences for chromosomal instability in the 

absence of RAD51D-dependent processes at telomeres.  

RAD51D is a RAD51 family member broadly appreciated to be indispensable for 

HR; yet, the specialized functions of the individual protein products have evaded full 

elucidation. Components of HR are recruited to stalled replication forks and inter-strand 

crosslinks (ICLs), as well as DNA double strand breaks (DSBs). Recently, a dominant 

RAD51 mutation in a patient with Fanconi anemia-like phenotypes was characterized and 

uncovered a role for RAD51 in ICL repair independent of HR (Wang et al. 2015), 
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suggesting there is much more to learn about these highly related yet potentially 

separable processes. Human variant alleles of the RAD51 paralogs confer cancer 

susceptibility, for example RAD51B mutations are associated with breast cancer 

(Golmard et al. 2013; Pelttari et al. 2016), RAD51C mutations are associated with breast 

and ovarian cancer , and RAD51D mutations are associated with ovarian cancer (Coulet 

et al. 2013; Meindl et al. 2010; Song et al. 2015; Vaz et al. 2010). There are many more 

mutations of unknown significance in these paralogs. Our results suggest that clinical 

variability in how patients respond to thiopurine treatment, as well as their potential risk 

for a future, therapy-related secondary dysplasia might include the status of RAD51D-

dependent processing of telomeres.   
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Table 5.1. Cytological analysis of MEFs treated with 6TG. 

 

 

(A) Vehicle treated MEFs  

Genotype Rad51d
+/+

 Rad51d
-/-

 Rad51d
-/-

Mlh1
-/-

 

Number of chromosomes 1005 462 980 

End-to-end fusions
a 

0(0) 0.01(5) 0.01(6) 

-TTAGGG
b 

0(0) 0.60(3) 0.33(2) 

+TTAGGG
b 

0(0) 0.40(2) 0.67(4) 

(B) 50 nM 6TG treated MEFs 

Genotype Rad51d
+/+

 Rad51d
-/-

 Rad51d
-/-

Mlh1
-/-

 

Number of chromosomes 552 587 572 

End-to-end fusions
a 

0(2) 0.03(16) 0.01(5) 

-TTAGGG
b 

1(2) 0.75(12) 0(0) 

+TTAGGG
b 

0(0) 0.25(4) 1(5) 

(C) 100 nM 6TG treated MEFs 

Genotype Rad51d
+/+

 Rad51d
-/-

 Rad51d
-/-

Mlh1
-/-

 

Number of chromosomes 522 463 632 

End-to-end fusions
a 

0.01(4) 0.07(32) 0.02(10) 

-TTAGGG
b 

0.75(3) 0.66(21) 0(0) 

+TTAGGG
b 

0.25(1) 0.34(11) 1(10) 

a
Frequency of end-to-end fusions represented as the percentage of the total number of 

chromosomes scored for that sample. The total number is shown in parentheses. 

b
+TTAGGG and -TTAGGG refer to the presence or absence of telomeric repeats at the 

fusion point. 
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Figure 5.1. Induction of γ-H2AX following treatment with 6TG. (A) The γ-H2AX signal 

(lower band) was determined by Western blot analysis after 6TG treatment for 48 and 72 

h at the doses indicated in Rad51d
+/+

 (lanes 1 – 3) and Rad51d
-/-

 (lanes 4 – 6) and 

Rad51d
-/-

Mlh1
-/-

 MEFs (lanes 7 – 9). (B & C) Quantification of γ-H2AX band intensities 

from untreated cells (□), or cells treated for 48 h (■) or 72 h (■) that were normalized to 

GAPDH (*p<0.05) after 50 nM (B) or 100 nM (C) 6TG treatment. (D) Quantitation of 

cellular γ-H2AX foci from untreated cells (□), or cells treated with 50 (■) or 100 nM (■) 

6TG. Nuclei with ten or more γ-H2AX foci were scored as positive, and at least 100 

nuclei were counted for each sample.    
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Figure 5.2. (A) Representative images of Rad51d
-/-

 cells mock treated or treated with 50 

or 100 nM 6TG. Blue panels are DAPI stained nuclei. Green panels are stained with anti-

γ-H2AX antibody. Red panels are stained with the telomere probe. Merge is the overlay 

of each panel. White arrowheads indicate the co-localization of γ-H2AX foci at 

telomeres. (B) Localization of γ-H2AX foci co-localized with telomere signal at 

telomeres in immortalized MEFs after treatment with vehicle alone, 50 nM, or 100 nM 

6TG. The three categories are 0 to 2 co-localized foci (□), 3 to 7 co-localized foci (■), or 

≥8 co-localized foci (■) per nuclei. 
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Figure 5.3. 6TG induced chromosome fusions in Rad51d-deficient immortalized MEFs.  

After treatment for 72 hours, chromosomes were stained with DAPI. The number of 

chromosome fusions was scored as a percent of the total number of chromosomes in 

vehicle, 50 nM, or 100 nM 6TG-treated Rad51d
+/+

 (□), and Rad51d
-/-

 (■) and Rad51d
-/-

Mlh1
-/-

 MEFs (■) Statistical significance was determined by calculating a z-score; 

*indicates p<0.05. 
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Figure 5.4. 6-TG treatment induces increased multinucleation in Rad51d-deficient and 

Mlh1-proficient MEFs. Rad51d
+/+

, Rad51d
-/-

, and Rad51d
-/-

Mlh1
-/-

  MEFs were treated 

with vehicle, 50 nM 6-TG, and 100 nM 6-TG for 72 hours. Cells containing more than 

one nuclei were scored positive. Statistical significance was determined by a z-test 

(***p<0.001). 
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Figure 5.5. 6-TG treatment does not affect the telomere distribution across nuclei within 

multinucleated cells. Rad51d
+/+

, Rad51d
-/-

, and Rad51d
-/-

Mlh1
-/-

  MEFs were treated with 

vehicle, 50 nM 6-TG, and 100 nM 6-TG for 72 hours then incubated with a fluorescent 

telomere-specific probe (CCCTAA). The number of telomere foci were counted for each 

nucleus in both single or multinucleated cells. 
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CHAPTER 6 

GENOME-WIDE IDENTIFICATION AND EXPRESSION ANALYSIS OF GENE 

DIFFERENCES BETWEEN RAD51D PROFICIENT AND DEFICIENT PRIMARY 

MOUSE EMBRYONIC FIBROBLASTS 
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Abstract 

One of the hallmarks of cancer is replicative immortality, and an enabling characteristic 

is genome instability that increases the prevalence of acquired gene mutations. Mutations 

in genes associated with the homologous recombination (HR) repair pathway increases 

genomic instability and are found in approximately 50% of ovarian cancers. Patients that 

carry mutations in the RAD51D HR gene are up to 12 times more likely to develop this 

cancer. Loss of Rad51d in mouse embryos confers mid-gestation embryo death, and cells 

isolated from Rad51d
-/-

 embryos fail to proliferate in culture. Concurrent deletion of the 

Trp53 gene extends embryo development up to 7 days, and Rad51d
-/-

Trp53
-/-

 (Rad51d-

deficient) MEF cell lines have been successfully generated. Rad51d-deficient cells have 

extensive chromosomal aberrations, such as fusions and telomere shortening, and similar 

defects are often observed in ovarian cancer cells. For this reason, Rad51d-deficient 

MEFs were used as a model for genomic unstable ovarian cancers. The gene expression 

profiles of primary MEFs derived from Rad51d
+/+

Trp53
-/-

 (Rad51d-proficient) and 

Rad51d-deficient embryos were analyzed by both microarray and RNA Seq. Microarray 

identified 489 genes with higher expression and 129 genes with lower expression in 

Rad51d-deficient MEFs compared with Rad51d-proficient MEFs. RNA Seq analysis 

identified 449 genes with higher expression, and 479 genes with lower expression in the 

absence of Rad51d. In both analyses, the highest proportion of genes were associated 

with cellular growth and proliferation. Twenty-one genes associated with cell cycle 

progression were identified by microarray including Id1, Id2, and Cdkn1a(p21) that had 

higher expression in Rad51d-deficient MEFs. Analysis using the TopHat function on the 

Illumina platform identified two intra-chromosomal gene fusions, one along 
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Chromosome 4 and one along Chromosome 17, in the Rad51d-proficient cell line, and 

three inter-chromosomal fusions all involving Chromosome 10. Only the fusion 

involving Chromosome 4 was also identified in the Rad51d-deficient MEFs, and no 

fusions were identified only in the Rad51d-deficient cell lines.  Together these data 

provide insight into gene expression compromises that support cell proliferation in the 

absence of Rad51d. 

 

Introduction 

Approximately 50% of ovarian cancers carry mutations in genes associated with the 

homologous recombination (HR) pathway, and exhibit extensive chromosome instability 

(Coulet et al. 2013; Eoh et al. 2016; Konstantinopoulos et al. 2015; Konstantinopoulos et 

al. 2014; Loveday et al. 2011; Meindl et al. 2010; Prakash et al. 2015; Song et al. 2015; 

Tedaldi et al. 2017; Thompson et al. 2013). The RAD51 gene family – RAD51, RAD51B, 

RAD51C, RAD51D, XRCC2, and XRCC3 – encode proteins that are part of the HR 

pathway. These proteins are essential for maintaining chromosome integrity and repairing 

DNA damage, and loss of any RAD51 paralog confers cellular sensitivity to DNA 

damaging agents (Andreassen and Ren 2009; Baumann and West 1998; Kim and 

D'Andrea 2012; Chirnomas et al. 2006; Rajesh, Litvinchuk, et al. 2011; 

Konstantinopoulos et al. 2014). RAD51D, the fourth member of the RAD51 family of 

genes, is a known breast and ovarian cancer susceptibility gene (Loveday et al. 2011; 

Song et al. 2015; Tedaldi et al. 2017; Thompson et al. 2013).  
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Early investigations into Mus musculus Rad51d demonstrated that loss of the gene 

confers an embryo lethal phenotype beginning at 8.5 days post conception (dpc) (Pittman 

and Schimenti 2000). A concurrent deletion of the Trp53 gene extends embryo 

development to 15.5 dpc (Smiraldo et al. 2005). In addition to embryo defects, null 

alleles of Rad51d lead to chromosomal defects in the form of breaks, gaps, and 

translocations, telomere shortening, and telomere-specific end-to-end fusions (Tarsounas 

et al. 2004; Smiraldo et al. 2005). Spectral karyotype analysis of cells isolated from a 

Rad51d-deficient embryo identified a large number of fusions – for example, between 

chromosomes 9 and 12, and chromosomes 2 and 19 (Smiraldo et al. 2005). Despite the 

extensive genomic instability and embryo lethality observed when the Rad51d gene is 

deleted, mouse embryonic fibroblasts (MEFs) were able to proliferate in culture when the 

Trp53 gene was deleted concurrently (Smiraldo et al. 2005).   

 In this study, gene expression profiles of Rad51d
+/+

Trp53
-/-

 (Rad51d-proficient) 

and Rad51d
-/-

Trp53
-/-

 (Rad51d-deficient) primary MEF cell lines were assessed by 

microarray and RNA Seq analyses. Microarray identified 618 genes with differential 

expression between the Rad51d-deficient and -proficient cell lines, and 21 of the 

identified genes are associated with cell cycle progression. RNA Seq analysis of Rad51d-

proficient and -deficient cell lines identified 928 genes that were differentially expressed. 

Five gene fusions were identified in the Rad51d-proficient cell lines, but only one of 

these fusions was also present in the Rad51d-deficient samples. Comparison between the 

two data sets identified 135 genes that were differentially expressed between Rad51d-

proficient and -deficient cell lines. Together these data provide insight into gene 

expression compromises that support cell division in a chromosomal unstable cell line. 
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Materials and Methods 

Cell Culture  

Rad51d
+/-

Trp53
+/-

 mice were intercrossed, and primary MEFs were generated from mid-

gestation embryos (Smiraldo et al. 2005). MEFs isolated from Rad51d
+/+

Trp53
-/- 

(MEFPR1) and two independent Rad51d
-/-

Trp53
-/-

 (MEFT11 and MEFT34) embryos 

were maintained at 37°C with 5% CO2 in Dulbecco’s Modified Eagle’s Medium 

(DMEM; Fisher Scientific) supplemented with 10% fetal bovine serum (Atlanta 

Biologicals), 1% penicillin/streptomycin, and 1% glutamine. For these experiments, 

primary MEFs were used only up until three passages.    

RNA Isolation and RT-PCR of Rad51d  

Total RNA was isolated using the miRNeasy Mini Kit (Cat. #: 217004; Qiagen) 

according to the manufacturer’s protocol. RNA quality was assessed using an Agilent 

2100 Bioanalyzer and RNA Integrity Numbers for all samples used ranged from 9.0 to 

10.0. First-strand reverse transcription for each RNA sample was performed using a 

ProScriptII First Strand DNA Synthesis Kit (NEB). Gene specific primers for MmRad51d 

spanning exon 1 to exon 4, and for MmGapdh were used: Rad51d SS1 5’-

(GCGAGCGCCCAAGTGACAGA)-3’, Rad51d SS2 (5’-

GCTACCTGGGCCACCCACAA-3’), Gapdh left (5’-AACTTTGGCATTGTGGAAG-

3’), Gapdh right (5’-GGATGCAGGGATGATGTTCT-3’). PCR reactions were 

performed under the following conditions: 30 cycles at 94°C for 30 seconds, 57°C for 30 

seconds, and 72°C for 1 minute.  
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Microarray Analysis 

Microarray experiments were performed using the Affymetrix platform. Total RNA 

samples were amplified and biotinylated using GeneChip WT PLUS Reagent Kit 

(Affymetrix, Santa Clara, CA).  One hundred nanograms of total RNA per sample was 

reverse transcribed into ds-cDNA using random hexamers, and the remaining RNA was 

degraded using RNase H. Single strand cDNA was then fragmented and labelled with 

biotin. The amplified and labeled samples were hybridized to Mouse Transcriptome 

Arrays 1.0 (Affymetrix, Santa Clara, CA) for 16 h at 45°C using a GeneChip 

Hybridization Oven 640 and a GeneChip Hybridization, Wash, and Stain Kit 

(Affymetrix, Santa Clara, CA). Hybridized arrays were washed and stained using a 

GeneChip Fluidics Stations 450. Arrays (8 total) were scanned using a GeneChip Scanner 

3000 7G system and computer workstation equipped with GeneChip Command Console 

4.0 software (Affymetrix, Santa Clara, CA).  

Following completion of array scans, probe cell intensity (CEL) files were 

imported into Expression Console Software (Affymetrix, Santa Clara, CA) and processed 

at the gene-level using the Robust Multichip Analysis (RMA) algorithm to generate CHP 

files. After confirming data quality within Expression Console, CHP files containing log2 

expression signals for each probe were imported into Transcriptome Analysis Console 

Software version 3.0.0.466 (Affymetrix, Santa Clara, CA) to analyze cell type specific 

transcriptional responses using one-way between-subject analysis of variance (ANOVA). 

A p-value of 0.05 and a fold change of 1.5 were used as cutoff parameters. Subsequently, 

pathway analysis of the differentially expressed genes was performed using Ingenuity 

Pathway Analysis software (Qiagen, Hilden, Germany).  
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RNA Sequencing Library Preparation 

RNA-seq libraries were constructed using TruSeq® Stranded mRNA LT (Cat. #: RS-

122-2101; Illumina) according to the manufacturer’s protocol. Briefly, the mRNA was 

purified by two rounds of polyA selection from the total RNA. The mRNA was reverse 

transcribed into first strand cDNA using reverse transcriptase and random primers. The 

second strand cDNA was synthesized using PCR. A single “A” nucleotide was added to 

the 3’ ends of the blunt fragments and ligated with multiple single “T” indexing adapters 

to the ends of the double strand cDNA. DNA libraries were enriched by PCR 

amplification, qualified using an Agilent Technologies 2100 Bioanalyzer, and quantitated 

by qPCR in a Bio-Rad iCycler using a Bio-Rad iCyclerTM qPCR Master Mix (Cat. #: 

KK4844; Kapa Biosystems). After denaturation, libraries were diluted to 1.8 pM with 

hybridization buffer. Paired end 75 bp sequencing was performed on the Illumina 

NextSeq 500 using NSQ® 500 High Output KT v2 (150 CYS; Cat. #: FC-404-2002; 

Illumina) per manufacturer’s protocol. 

RNA Sequencing Analysis 

Expression analysis was performed on the Illumina BaseSpace platform (Illumina). The 

iGenome reference dataset used for analysis was the University of California – Santa 

Cruz (UCSC) Mus musculus reference genome (mm10). Uniquely mapped reads were 

assembled into transcripts guided by the UCSC Mus musculus mm10 RefSeq & Gencode 

gene annotation using the TopHat function on the Illumina platform. Expression 

differences between conditions were evaluated using DESeq2 (Love, Huber, and Anders 

2014; Schurch et al. 2016). The analysis was generated using Partek
®
 software (St. Louis, 

MO, USA). Annotation of significantly different transcripts and enrichment analysis was 
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performed with DAVID. This is a  bioinformatic resource, supported by the National 

Institutes of Allergy and Infectious Disease, that uses integrated biological 

knowledgebases to systematically extract biological meaning from large data sets (Huang 

da, Sherman, and Lempicki 2009). The hierarchical clustering analysis of the global gene 

expression pattern in different samples was carried out using heatmap.2 function (gplots 

package) in R. Gene set enrichment was analyzed with GSEA software (Subramanian et 

al. 2005). 

 

Results 

Microarray gene expression analysis of primary mouse embryonic fibroblasts 

The main goal of this study was to identify expression profile differences between low-

passage primary mouse embryonic fibroblasts (MEFs) generated from individual 

Rad51d-deficient and Rad51d-proficient
 
embryos (described previously (Smiraldo et al. 

2005)) using an Affymetrix microarray platform. RNA was isolated, and the Rad51d 

status of each cell line was confirmed by RT-PCR (Figure 6.1A). Differences in gene 

expression levels were determined by comparing the Rad51d-deficient sample with the 

Rad51d-proficient (control) sample. Genes with greater than 1.5-fold difference are 

reported. Of the 65,956 genes represented on the array, 618 were differentially expressed 

between the samples (Table A.1); 489 genes had higher expression, and 129 had lower 

expression in the Rad51d-deficient cell line compared with the Rad51d-proficient cell 

line. 

The transcripts represented on the array encoded only for known protein products 

and predicted genes based on Ensembl data sets. Of the genes with higher expression in 
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the Rad51d-deficient cell line, 207 encode known protein products. A proteomics screen 

performed by the Pittman laboratory identified 75 proteins that co-precipitate with 

RAD51D (Rajesh et al. 2009). The genes that encode two of the proteins identified in this 

screen – Ifit1 and Rnf213 – had lower expression in the Rad51d-deficient cell line. 

Expression of Ifit1 was 2.35 times lower in the absence of Rad51d. In the Mus musculus 

genome, this gene maps to chromosome 19 and encodes for the interferon-induced 

protein with tetratricopeptide repeats 1 (IFIT1) protein that is expressed in mouse large 

intestine, liver, small intestine, and bladder (Yue et al. 2014). In a study of breast cancer 

patients, expression of IFIT1 was associated with improved local relapse-free survival 

and has been shown to mediate chemotherapy and radiation resistance (Danish et al. 

2013). Rnf213 maps to chromosome 11 and is most highly expressed in ovary, mammary 

gland, and thymus tissues (Yue et al. 2014). This gene encodes for the RING finger 213 

(RNF213) E3 ubiquitin ligase protein. In humans, small nucleotide polymorphisms in this 

gene is associated with increased risk for moyamoya disease (Hu, Luo, and Chen 2017).  

The Ingenuity Pathway Analysis (IPA) tool was used to sort genes into known 

biological functions (Figure 6.2). This software is designed to “integrate previously 

observed cause-effect relationships reported in the literature” with a gene expression data 

set using Ingenuity Knowledge Base, a “collection of observations from various 

experimental contexts curated from biomedical literature” (Kramer et al. 2014). For this 

study, IPA was used to categorized genes into known biological functions. Ninety-one 

genes with differential expression between the Rad51d-deficient and Rad51d-proficient 

cell lines were associated with “cellular growth and proliferation” (Table 6.1). 



www.manaraa.com

119 

One of the main goals of this project was to understand how expression 

compromises in the absence of Rad51d promote cell division and proliferation when the 

genome is unstable. Twenty-one genes associated with “cell cycle progression” (18 

included in the “cellular growth and proliferation” group) had altered gene expression in 

the absence of Rad51d (Table 6.2). Expression of Stat1 was 1.6-fold lower in the 

Rad51d-deficient cell line than the Rad51d-proficient. The STAT1 protein encoded by 

this gene is activated in response to extracellular signals, including cytokines and growth 

factors, and acts as a transcription factor that activates expression of over 1000 gene 

targets (Calo et al. 2003; Satoh and Tabunoki 2013).   Two members of the DNA binding 

and/or differentiation (Id) family – Id1 and Id2 – had 1.5- and 2.3-fold higher expression 

in the absence of Rad51d, respectively.  The proteins encoded by these genes, ID1 and 

ID2, block binding of helix-loop-helix (HLH) transcription factors during the S phase of 

the cell cycle to prevent cell differentiation (Jogi et al. 2002). Expression of the Cdkn1a 

gene was 1.6-fold higher in the Rad51d-deficient cell line. This gene encodes the cell-

cycle dependent kinase p21 that can function independently of p53 to initiate cell cycle 

arrest in response to DNA damage and cellular stress (Georgakilas, Martin, and Bonner 

2017). 

RNA Seq gene expression analysis of primary mouse embryonic fibroblasts 

Microarray is a useful tool for identifying genes with differential expression between cell 

lines, however, analysis is limited to gene transcripts represented on the array. RNA Seq 

allows for genome-wide detection of gene expression levels with low background 

compared to microarray (Wang, Gerstein, and Snyder 2009).  For this reason, we chose to 
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analyze gene expression in an independent Rad51d-deficient and the Rad51d-proficient 

cell lines using RNA Seq.  

Nine hundred twenty-eight genes were differentially expressed between the 

Rad51d-deficient and Rad51d-proficient
 
samples (Table A.2). Of the genes identified, 

449 genes had higher expression and 479 had lower expression in the absence of Rad51d. 

The Cd52 gene had 11.56 times lower expression in the Rad51d-deficient cell line 

compared with the Rad51d-proficient cell line. This gene maps to Chromosome 4 and 

encodes the CD52 glycoprotein that is expressed on the surface of normal and leukemic 

immune cells (Vojdeman et al. 2017). The Stra6 gene had 3.17 times lower expression in 

the Rad51d-deficient cell line. This gene maps to Chromosome 9 and encodes the integral 

membrane receptor protein STRA6 that mediates uptake of vitamin A (Chen et al. 2016).  

IPA was used to sort the genes identified by RNA Seq into categories based on 

known biological functions (Figure 6.3). The categories are defined based on literature 

data, and 156 genes with differential expression between the Rad51d-deficient and 

Rad51d-proficient cell lines were associated with “cellular growth and proliferation” 

(Table 6.3), and 146 genes were associated with “cell death and survival.” These data 

suggest that the loss of Rad51d affects expression of genes that regulate cell proliferation.  

Chromosome fusion points identified by RNA Seq 

One advantage of RNA Seq is the ability to identify transcriptome boundaries, such as 

the connectivity between two exons (Wang, Gerstein, and Snyder 2009). The TopHat-

Fusion algorithm is designed to identify both intra- and inter-chromosome fusions (Kim 

and Salzberg 2011), and was used to identify gene fusions in the Rad51d-proficient and 

Rad51d-deficient samples (Table 6.4). Five gene fusions were identified in the Rad51d-
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proficient sample; two intra- and three inter-chromosome gene fusions. The first intra-

chromosome fusion was along Chromosome 4 and resulted in a fusion between the 

coding region for the Faf1 gene and a non-coding region within the chromosome. The 

second was along Chromosome 17 and resulted in a fusion between the coding regions 

for the Acat3 and Acat2 genes. The other three fusions were inter-chromosome fusions 

that all involved different regions along Chromosome 10. The fusions occurred at 

different points along Chromosome 10, suggesting that multiple breaks had occurred. The 

first inter-chromosome fusion occurred at the coding region for the Nap1l1 gene along 

Chromosome 10 and a non-coding region of the Chromosome 1. The second fusion 

occurred at the coding regions for the Hmga2 gene along Chromosome 10 and the 

Sdccag8 gene along Chromosome 1. The third fusion occurred along the coding region 

for H2afy2 along Chromosome 10 and the Pvt1 gene along Chromosome 15.  

One intra-chromosome fusion was identified in the Rad51d-deficient sample 

along Chromosome 4 between the coding region for the Faf1 gene and a non-coding 

region. This same fusion was identified in the Rad51d-proficient. We hypothesized that 

more gene fusions would be identified in the Rad51d-deficient cell line, and that these 

fusions would be unique to the Rad51d
-/-

 genotype. However, this analysis did not 

identify any novel fusions in the Rad51d-deficient sample compared with the Rad51d-

proficient cell line.  

Genes with altered expression identified by both microarray and RNA Seq 

Microarray and RNA Seq analysis identified 618 and 928 genes, respectively, that were 

differentially expressed between Rad51d-deficient and Rad51d-proficient
 
cell lines. Of 

those genes, 111 were identified in both analyses (Table 6.5). The genes are listed by 
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increasing fold change (Rad51d-deficient v. Rad51d-proficient) as determined by the 

microarray, and only genes that code for a known protein product are included. IPA 

identified 91 and 156 genes by microarray and RNA Seq, respectively, that are associated 

with the “cellular growth and proliferation.” Of these, 18 genes were identified by both 

analyses (Table 6.6). Of the 21 cell cycle regulatory genes identified by microarray, 8 

were also identified by RNA Seq, including Cdkn1a (Table 6.7). The Ifit1 gene was 

identified by microarray and by RNA Seq as being differentially expressed in the absence 

of Rad51d. In a proteomics study, the IFIT1 protein was identified as an interacting 

protein with RAD51D (Rajesh et al. 2009). Interestingly, the expression differences were 

inconsistent between the independent Rad51d-deficient samples. Expression of Ifit1 was 

determined to be 2.35 times lower by microarray and 1.09 times higher by RNA Seq, 

respectively, in the Rad51d-deficient cell line compared with the Rad51d-proficient cell 

line.  

 

Discussion 

Hanahan and Weinberg classified six identifiable biological characteristics of tumor 

development that they termed the “hallmarks of cancer” (Hanahan and Weinberg 2000). 

In addition to these features, cancer cells acquire ‘enabling characteristics’ that contribute 

to carcinogenesis. In 2011, Hanahan and Weinberg classified ‘genome instability’ as an 

enabling characteristic, and argued that tumor growth can often be attributed to 

acquisition of mutations that promote cell proliferation and inhibit cell death (Hanahan 

and Weinberg 2011). The observation that cancer is a mutation-driven disease also led to 

the “Mutator Phenotype Hypothesis.” First described by Lawrence Loeb, this hypothesis 
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stated that “mutations occurred randomly throughout the genome, and among these 

would be mutations in genes that guarantee the fidelity of DNA replication… and repair” 

(Loeb, Springgate, and Battula 1974). Together, these ideas have led to the current belief 

that “defects in genome maintenance are… instrumental for tumor progression” 

(Hanahan and Weinberg 2011). 

The RAD51D gene encodes a protein that functions during homologous 

recombination (HR)-mediated repair of DNA double strand breaks and interstrand 

crosslinks, and is essential for maintaining chromosome and telomere stability (Gruver et 

al. 2005; Hinz et al. 2006; Rajesh, Litvinchuk, et al. 2011; Rajesh et al. 2010; Smiraldo et 

al. 2005; Tarsounas et al. 2004; Wyatt et al. ; Yard et al. 2016). Loss of the Rad51d gene 

induces an embryo lethal phenotype in mice, and cells isolated from these embryos 

exhibit extensive chromosomal defects (Pittman and Schimenti 2000; Smiraldo et al. 

2005). Despite chromosome instability, Rad51d
-/-

 cells proliferate in culture when the 

Trp53 gene is also deleted (Smiraldo et al. 2005). For these reasons, Rad51d
-/-

Trp53
-/-

 

(Rad51d-deficient) mouse embryonic fibroblast (MEF) cell lines serve as a model of 

chromosomally unstable mammalian cells and can be utilized to identify expression 

compromises that promote cell growth under genome unstable conditions. For this study, 

gene expression analysis of Rad51d-deficient and Rad51d-proficient primary mouse 

embryonic fibroblast cell lines was performed using both microarray and RNA Seq 

technologies.  

Microarray is a high-throughput bioinformatics technique that boasts the ability to 

analyze expression of tens of thousands of genes at once (Govindarajan et al. 2012). In 

this study, microarray analysis identified 618 genes with differential expression between 



www.manaraa.com

124 

Rad51d-deficient and Rad51d-proficient cell lines. Ingenuity Pathway Analysis (IPA) 

performed on the microarray data set identified 91 genes that are associated with “cellular 

growth and proliferation,” and 21 genes associated with cell cycle progression. The cell 

cycle genes include Id1, Id2, and Cdkn1a(p21) are discussed below.  

The Id1 and Id2 genes encode proteins that promote abnormal cell proliferation. 

ID1 forms a heterodimer with the ETS-1 transcription factor to preventing binding and 

activation of target genes. One target of ETS-1 is p16, a tumor suppressor that activates 

cell cycle arrest. Binding of ID1 to ETS-1 suppresses transcription of p16, leading to 

increased expression of CDKs that promote cell cycle progression and cell differentiation 

(Perk, Iavarone, and Benezra 2005). Overexpression of ID1 has been linked with 

increased development of several cancer types, and approximately 70% of ovarian 

cancers have abnormal expression of ID1 that has been correlated with cancer cell 

proliferation and resistance to apoptosis (Zhang et al. 2004). Consistent with these 

previous observations, increased expression of Id1 and Id2 in Rad51d-deficient cells may 

contribute to cell proliferation and growth, despite the extensive genomic instability.  

 The Cdkn1a(p21) gene encodes the p21 protein that induces cell growth arrest and 

inhibits cell cycle progression in response to DNA damage and cellular stress (Abbas and 

Dutta 2009). The cell lines used for these studies are Trp53-null, therefore, expression of 

Cdkn1a(p21) in these cells is independent of p53. In a p53-deficient environment, p21 

leads to dysregulation of replication machinery, increased genome instability, and high 

levels of cell proliferation (Georgakilas, Martin, and Bonner 2017). Furthermore, these 

data provide an explanation for how ovarian cancers that carry mutations in the RAD51D 

gene proliferate in the presence of genome instability.   
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 Advancement in bioinformatics technologies have led to the rise of an alternative 

high-throughput method for analyzing gene expression: RNA Seq. This method provides 

more precise measurements of gene expression levels than microarray, and is not limited 

to detecting transcripts that correspond to reference sequences on an array (Wang, 

Gerstein, and Snyder 2009).  In this study, 928 genes with altered expression in the 

Rad51d-deficient cell line compared with the Rad51d-proficient cell line were identified 

by RNA Seq. Previous studies showed increased levels of chromosome breaks, fusions, 

and translocations in Rad51d-deficient cells (Smiraldo et al. 2005), and we hypothesized 

that certain regions of the genome would be more susceptible to fusions in the absence of 

Rad51d. Using the TopHat-Fusion algorithm in the Illumina platform, gene fusions 

present in the Rad51d-deficient and -proficient cell lines were identified. Two intra-

chromosomal and three inter-chromosomal gene fusions were detected in the Rad51d-

proficient sample, and only one intra-chromosomal fusion was observed in the Rad51d-

deficient sample. The fusion identified in the Rad51d-deficient sample occurred along 

Chromosome 4 between the coding region for Faf1 and a non-coding region. This fusion 

has never been reported but may be present in the mouse germline as it was identified in 

both the Rad51d-proficient and -deficient cells. Previous spectral karyotyping of Rad51d-

deficient cells identified chromosomal fusions, for example between chromosomes 9 and 

12, and chromosomes 2 and 19 (Smiraldo et al. 2005); however, these specific 

translocations were not detected in this study. These data did not support my assertion 

that loss of Rad51d would affect specific regions along the genome.  

  Future studies would complement the data presented here by investigating how 

loss of other RAD51 paralogs affects genome stability. Loss of either Rad51c or Xrcc2 in 
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embryos also disrupts development mid-gestation and induces an embryo lethal 

phenotype. Consistent with Rad51d-deficient cells, loss of Rad51c or Xrcc2 inhibits 

proliferation in culture unless Trp53 is deleted concurrently (Kuznetsov et al. 2009; 

Adam, Deans, and Thacker 2007). Analyzing gene expression profiles of primary MEF 

cell lines that lack Rad51c or Xrcc2 could provide additional insight into how loss of 

other HR DNA repair genes affects gene expression and promotes tumor growth.  

Additional future studies could include testing inhibitors of p21 in the Rad51d-

proficient and -deficient cell lines. The McInnes laboratory at the University of South 

Carolina has successfully synthesized a 16-mer peptide that competes with the p21 

binding site along the proliferating cell nuclear antigen (PCNA) protein and provides 

evidence for a potential target site that will disrupt this interaction (Kontopidis et al. 

2005). Interaction between p21 and PCNA delays replication in the presence of DNA 

damage. Inhibitors that disrupt p21 binding with PCNA will prevent DNA repair and 

promote apoptosis (Abbas and Dutta 2009). If increased expression of p21 is a 

compensatory mechanism that promotes cell survival in the absence of Rad51d, then 

inhibiting the activity of this protein offers the potential to induce apoptosis in these cells. 

This type of therapeutic approach would offer a myriad of benefits in the clinic, 

particularly for treating ovarian cancer patients that increased p21 expression in 

conjunction with mutations in RAD51D and/or TP53.  
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Table 6.1.  List of genes associated with “cellular growth and proliferation” identified by 

Ingenuity Pathway Analysis of the microarray data set. The q-value shown is an adjusted 

p-value accounting for the false discovery rate (FDR) which is necessary when analyzing 

large data sets.   

 

Gene  

Fold Change  

(Rad51d-proficient v. 

Rad51d-deficient) 

q-value 

Rad51d 2.66 2.59E-03 

Il1rl1 2.38 2.59E-03 

Usp18 2.16 1.72E-01 

Adam12 1.95 8.41E-03 

Fcer1g 1.95 3.62E-02 

Csf1r 1.72 2.11E-02 

Adm 1.72 4.55E-02 

Itgam 1.71 2.14E-02 

Ccl9 1.71 8.68E-02 

Adam8 1.7 1.09E-01 

Myd88 1.7 3.17E-01 

Slit2 1.65 2.11E-02 

Ldlr 1.64 1.85E-02 

Stat1 1.63 3.07E-01 

Serpine1 1.6 3.92E-03 

Tnfsf9 1.6 2.15E-01 

Tnc 1.59 2.11E-02 

Plac8 1.58 4.32E-02 

Lsp1 1.57 4.29E-02 

Msr1 1.57 7.16E-02 

Tlr7 1.53 9.05E-02 

Tyrobp 1.52 1.38E-01 

Tfap2b 1.51 2.77E-02 

Rarb -1.51 1.22E-02 

Plp1 -1.51 2.53E-02 

Nr4a1 -1.51 2.85E-02 

Nfkbia -1.51 3.01E-02 

Epha4 -1.51 3.54E-01 

Cyp26b1 -1.52 2.64E-02 

Pdgfra -1.52 1.76E-01 

Des -1.53 1.55E-01 

Msx2 -1.53 1.56E-01 

Ptprq -1.53 2.36E-01 

Mdk -1.54 2.18E-02 

Id1 -1.54 4.14E-02 

Hist1h1c -1.54 5.47E-02 

Peg3 -1.54 3.47E-01 

Krt8 -1.55 2.11E-02 

Tgfb2 -1.55 1.64E-01 

Dusp4 -1.56 1.87E-02 

Rcan1 -1.56 2.15E-02 

Smad6 -1.56 3.54E-02 
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Pdgfb -1.56 4.70E-02 

Tnnt2 -1.56 4.81E-02 

Grem1 -1.56 2.34E-01 

Ngfr -1.57 1.22E-02 

Gpx7 -1.58 1.03E-02 

Fas -1.59 3.11E-02 

Cyp1b1 -1.59 1.89E-01 

Lims2 -1.6 4.72E-02 

Bmp4 -1.6 1.69E-01 

Cdkn1a -1.61 1.22E-02 

Fabp3 -1.61 2.58E-02 

Perp -1.63 8.40E-02 

Gabrb3 -1.64 1.36E-01 

Ddit3 -1.65 2.39E-02 

Edn1 -1.65 6.08E-02 

Casp4 -1.65 2.93E-01 

Myrf -1.66 2.59E-03 

Nupr1 -1.67 1.22E-02 

Krt18 -1.68 1.49E-02 

Serpinb6b -1.68 3.57E-02 

Thbd -1.68 7.71E-02 

Myh11 -1.7 1.20E-02 

Mmp2 -1.72 1.46E-02 

Cp -1.73 6.45E-02 

Dusp6 -1.75 4.94E-02 

Cd55 -1.75 1.33E-01 

Rorb -1.77 1.77E-01 

Dlx2 -1.81 4.66E-02 

Crip1 -1.84 4.14E-02 

Sfrp1 -1.84 1.40E-01 

Serpine2 -1.88 2.49E-02 

Eng -1.9 3.92E-03 

Dsp -1.93 1.17E-02 

Hmox1 -1.97 1.22E-02 

Gas6 -1.98 5.39E-03 

Clu -2 1.26E-02 

Ppargc1a -2.12 3.94E-02 

Ptgs1 -2.14 3.51E-03 

Nqo1 -2.25 6.62E-03 

Id2 -2.28 1.37E-02 

Kif1a -2.33 3.92E-03 

Aldh1a1 -2.53 2.91E-03 

Serpinb9b -2.55 1.91E-02 

Ptn -2.65 3.87E-01 

Dcn -2.72 1.51E-02 
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Table 6.2. Genes identified by microarray analysis in Rad51d-deficient primary cell lines 

associated with cell cycle progression. 

 

Gene Symbol 

Fold Change 

(Rad51d-proficient v. 

Rad51d-deficient) 

Rad51d 2.66 

Adam12 1.95 

Adm 1.72 

Csf1r 1.72 

Stat1 1.63 

Nfkbia -1.51 

Nr4a1 -1.51 

Rarb -1.51 

Trnp1 -1.51 

Pdgfra -1.52 

Id1 -1.54 

Ptx3 -1.54 

Tgfb2 -1.55 

Ifnz -1.57 

Cdkn1a (p21) -1.61 

Nupr1 -1.67 

Krt18 -1.68 

Dlx2 -1.81 

Gas6 -1.98 

Id2 -2.28 

Ly6a -2.37 
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Table 6.3. List of genes associated with “cellular growth and proliferation” identified by 

Ingenuity Pathway Analysis of the RNA Seq data set. The q-value shown is an adjusted 

p-value taking into account the false discovery rate (FDR) and is necessary when 

analyzing large sets of data.   

 

Gene Symbol 

Fold Change 

(Rad51d-proficient v. 

Rad51d-deficient) 

q value 

Vav1 5.38 2.72E-03 

Spi1 4.91 1.42E-02 

Laptm5 4.88 1.51E-03 

Trem2 4.87 1.51E-03 

Dock2 4.87 2.72E-03 

Itgam 4.76 1.51E-03 

C5ar1 4.75 1.51E-03 

Tyrobp 4.69 1.51E-03 

Fcer1g 4.59 1.51E-03 

Inpp5d 4.58 1.51E-03 

Col2a1 4.41 1.51E-03 

Ncf1 4.35 1.51E-03 

Cd37 4.32 3.20E-02 

Itgal 4.17 1.51E-03 

Csf1r 3.60 1.51E-03 

Pik3ap1 3.54 1.51E-03 

C3ar1 3.36 1.51E-03 

Irf8 2.81 1.51E-03 

Nckap1l 2.73 1.51E-03 

Plac8 2.48 1.51E-03 

Dok2 2.46 1.51E-03 

Slfn2 2.21 1.51E-03 

Ptpn6 2.19 1.51E-03 

Zic1 2.04 1.51E-03 

Itgb2 1.80 1.51E-03 

C1qtnf3 1.79 1.51E-03 

Foxc2 1.74 1.51E-03 

Coro1a 1.70 1.51E-03 

Ptpre 1.51 1.51E-03 

Krt7 1.50 1.51E-03 

Hoxb4 1.49 1.51E-03 

Egr2 1.37 1.51E-03 

Ret 1.36 1.51E-03 

Cspg4 1.33 1.51E-03 

Ucp2 1.31 1.51E-03 

Dmrta2 1.26 1.51E-03 

Skap1 1.25 1.51E-03 

Ctsh 1.19 1.51E-03 

Lims2 1.15 1.51E-03 

Serpine1 1.14 1.51E-03 

Egr1 1.08 1.51E-03 

Ctgf 1.01 1.51E-03 
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Cd14 1.01 1.51E-03 

Klf5 0.99 1.51E-03 

Hspb1 0.95 1.51E-03 

Krt19 0.90 1.51E-03 

Csf1 0.89 1.51E-03 

Nog 0.88 1.51E-03 

Junb 0.88 1.51E-03 

Igsf9 0.86 1.51E-03 

Gas7 0.85 1.51E-03 

Cblb 0.85 1.51E-03 

Cited2 0.83 1.51E-03 

Klf2 0.83 1.51E-03 

Hlx 0.83 2.72E-03 

Runx1 0.82 1.51E-03 

Plaur 0.82 1.51E-03 

Kdr 0.81 1.51E-03 

Flt1 0.81 1.51E-03 

Phlpp1 0.79 1.51E-03 

Syk 0.76 1.51E-03 

Twist2 0.73 1.51E-03 

Gadd45g 0.73 1.51E-03 

Arhgdib 0.72 1.51E-03 

Rtn4r 0.72 2.16E-02 

Ngf 0.69 3.86E-03 

Bcar1 0.68 2.72E-03 

Epha2 0.67 1.51E-03 

Ptk2b 0.67 7.91E-03 

Runx3 0.67 3.03E-02 

Flt4 0.65 5.04E-03 

Errfi1 0.64 3.86E-03 

Adm 0.61 1.24E-02 

Srf 0.60 8.90E-03 

Etv6 0.60 9.82E-03 

Pim3 0.60 2.16E-02 

Sema7a 0.59 4.22E-02 

Jund 0.53 2.52E-02 

Tgfb1 0.53 3.54E-02 

Rhob 0.51 3.77E-02 

Cav2 -0.55 2.44E-02 

Idh1 -0.68 2.72E-03 

Net1 -0.72 1.51E-03 

Sfrp1 -0.75 1.51E-03 

Fgf10 -0.76 5.04E-03 

Gadd45a -0.76 7.00E-03 

Crem -0.76 9.82E-03 

Cdon -0.79 1.51E-03 

Rgs4 -0.84 1.51E-03 

Lrrn1 -0.87 4.97E-02 

Ackr3 -0.88 1.51E-03 

Sfrp2 -0.88 1.51E-03 

Pappa -0.88 1.51E-03 

Lpin1 -0.90 1.51E-03 

Irf1 -0.99 1.51E-03 
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Nupr1 -1.01 1.51E-03 

Mt2 -1.01 1.51E-03 

Grem1 -1.03 1.51E-03 

Ppargc1a -1.03 1.51E-03 

Sprr1a -1.07 1.51E-03 

Penk -1.07 1.51E-03 

Pax3 -1.08 1.51E-03 

Ccl2 -1.10 1.51E-03 

Angpt1 -1.14 2.85E-02 

Gas1 -1.16 1.51E-03 

C3 -1.17 2.72E-03 

Ptgs1 -1.20 1.51E-03 

Igfbp3 -1.21 1.51E-03 

Plat -1.21 1.51E-03 

Nrep -1.26 1.51E-03 

Tmem119 -1.29 1.51E-03 

Snca -1.29 1.51E-03 

Spp1 -1.35 1.51E-03 

Axin2 -1.36 1.51E-03 

Mst1r -1.38 3.03E-02 

Mmp9 -1.42 1.51E-03 

Rarb -1.52 1.51E-03 

Il33 -1.52 6.03E-03 

Igfbp5 -1.61 1.51E-03 

Eln -1.64 1.51E-03 

Gfra2 -1.70 1.51E-03 

Dcn -1.74 1.51E-03 

Dkk3 -1.77 1.51E-03 

Cd34 -1.79 1.51E-03 

Osr2 -1.80 1.51E-03 

Ptn -1.84 1.51E-03 

Tnfsf18 -1.85 1.51E-03 

Wisp2 -1.92 1.51E-03 

Icam1 -2.05 1.51E-03 

Barx1 -2.06 1.51E-03 

Lgr5 -2.08 2.72E-03 

Mmp3 -2.16 1.51E-03 

Dlx5 -2.20 1.51E-03 

Lum -2.47 1.51E-03 

Dlx6 -3.05 3.86E-03 
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Table 6.4. Chromosome fusions identified in the RNA Seq samples by TopHat-Fusion. 

The “Gene” and “Chr.” columns lists the genes on the “left” and “right” side of the 

fusion. The “Pos.” column lists the coordinates for the respective gene.  

  

Rad51d
+/+ 

Trp53
-/- 

Gene (left) Chr. (left) Pos. (left) Gene (right) Chr. (right) Pos. (right) 

Faf1 4 109,710,857 --- 4 109,656,436 

Nap1l1 10 111,495,360 --- 1 135,233,180 

Hmga2 10 120,476,118 Sdccag8 1 176,835,817 

H2afy2 10 61,743,005 Pvt1 15 62,218,557 

Acat3 17 12,939,874 Acat2 17 12,948,657 

 

Rad51d
-/- 

Trp53
-/- 

Gene (left) Chr. (left) Pos. (left) Gene (right) Chr. (right) Pos. (right) 

Faf1 4 109,710,857 --- 4 109,656,436 
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Table 6.5. List of genes identified in both microarray and RNA Seq analysis. Genes are 

listed by increasing fold change as determined by microarray and only genes with known 

protein products are listed. 

 

Gene Description 

Fold Change 

(Rad51d-proficient v. 

Rad51d-deficient) 

Lyz2 lysozyme 2 2.90 

Rad51d RAD51 homolog D 2.66 

C1qb complement component 1, q subcomponent, beta 

polypeptide 
2.53 

Il1rl1 interleukin 1 receptor-like 1 2.38 

Ifit1 interferon-induced protein with tetratricopeptide 

repeats 1 
2.35 

Usp18 ubiquitin specific peptidase 18 2.16 

Slc7a8 solute carrier family 7 (cationic amino acid 

transporter, y+ system), member 8 
1.96 

Fcer1g Fc receptor, IgE, high affinity I, gamma polypeptide 1.95 

Cdh10 cadherin 10 1.94 

Asb5 ankyrin repeat and SOCs box-containing 5 1.92 

Slc16a3 solute carrier family 16 (monocarboxylic acid 

transporters), member 3 
1.89 

Htr1b 5-hydroxytryptamine (serotonin) receptor 1B 1.78 

Csf1r colony stimulating factor 1 receptor 1.72 

Adm adrenomedullin 1.72 

Bcl2a1b B cell leukemia/lymphoma 2 related protein A1b 1.72 

Itgam integrin alpha M 1.71 

Ccl9 chemokine (C-C motif) ligand 9 1.71 

Adam8 a disintegrin and metallopeptidase domain 8 1.70 

Lrrc15 leucine rich repeat containing 15 1.67 

Lcp1 lymphocyte cytosolic protein 1 1.65 

Slc1a6 solute carrier family 1 (high affinity 

aspartate/glutamate transporter), member 6 
1.65 

Slfn2 schlafen 2 1.63 

Alox5ap arachidonate 5-lipoxygenase activating protein 1.62 

Serpine1 serine (or cysteine) peptidase inhibitor, clade E, 

member 1 
1.60 

Grem2 gremlin 2 homolog, cysteine knot superfamily 

(Xenopus laevis) 
1.60 

Nipal1 NIPA-like domain containing 1 1.60 

Plac8 placenta-specific 8 1.58 

Tnn tenascin N 1.58 

Msr1 macrophage scavenger receptor 1 1.57 

C1qc complement component 1, q subcomponent, C chain 1.57 

Tll1 tolloid-like 1.55 

Xaf1 XIAP associated factor 1 1.55 

Phlpp1 PH domain and leucine rich repeat protein 

phosphatase 1 
1.54 

Tlr7 toll-like receptor 7 1.53 

Specc1 sperm antigen with calponin homology and coiled-

coil domains 1; cytospin B 
1.53 
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Flt4 FMS-like tyrosine kinase 4 1.53 

Ulbp1 UL16 binding protein 1 1.53 

Tyrobp TYRO protein tyrosine kinase binding protein 1.52 

Rtp4 receptor transporter protein 4 1.52 

Rarb retinoic acid receptor, beta -1.51 

Nr4a1 nuclear receptor subfamily 4, group A, member 1 -1.51 

Epha4 Eph receptor A4 -1.51 

Ccdc3 coiled-coil domain containing 3 -1.51 

Ackr3 atypical chemokine receptor 3 -1.52 

AW551984 expressed sequence AW551984 -1.52 

Des desmin -1.53 

Msx2 msh homeobox 2; homeo box, msh-like 2 -1.53 

Prss12 protease, serine 12 neurotrypsin (motopsin) -1.53 

Mxd4 Max dimerization protein 4 -1.53 

Lrrn1 leucine rich repeat protein 1, neuronal -1.53 

Id1 inhibitor of DNA binding 1 -1.54 

Ptx3 pentraxin related gene -1.54 

Mdk midkine; midkine (Mdk), transcript variant 1, 

mRNA. 
-1.54 

Rragd Ras-related GTP binding D -1.55 

Grem1 gremlin 1 -1.56 

Dlx5 distal-less homeobox 5 -1.56 

Tbx2 T-box 2 -1.56 

Ngfr nerve growth factor receptor (TNFR superfamily, 

member 16) 
-1.57 

Anxa8 annexin A8 -1.57 

Ndrg2 N-myc downstream regulated gene 2 -1.58 

Rhoj ras homolog gene family, member J -1.58 

Myo16 myosin XVI -1.59 

Lims2 LIM and senescent cell antigen like domains 2 -1.60 

Acot13 acyl-CoA thioesterase 13 -1.60 

Pmp22 peripheral myelin protein 22 -1.61 

Gsta4 glutathione S-transferase, alpha 4 -1.61 

Mgst1 microsomal glutathione S-transferase 1 -1.63 

Igfbp6 insulin-like growth factor binding protein 6 -1.63 

Ddit3 DNA-damage inducible transcript 3 -1.65 

Casp4 caspase 4, apoptosis-related cysteine peptidase -1.65 

Dhrs3 dehydrogenase/reductase (SDR family) member 3 -1.65 

Popdc2 popeye domain containing 2 -1.66 

Nupr1 nuclear protein transcription regulator 1 -1.67 

Aqp5 aquaporin 5 -1.69 

Myh11 myosin, heavy polypeptide 11, smooth muscle -1.70 

Nnt nicotinamide nucleotide transhydrogenase -1.70 

Sparcl1 SPARC-like 1 -1.71 

Mmp2 matrix metallopeptidase 2 -1.72 

Pgf placental growth factor -1.72 

Dusp6 dual specificity phosphatase 6 -1.75 

Ptprb protein tyrosine phosphatase, receptor type, B -1.76 

Rorb RAR-related orphan receptor beta -1.77 

Tnfsf18 tumor necrosis factor (ligand) superfamily, member 

18 
-1.77 

Cotl1 coactosin-like 1 (Dictyostelium) -1.78 

Cdo1 cysteine dioxygenase 1, cytosolic -1.80 
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Mgst3 microsomal glutathione S-transferase 3 -1.81 

Pgm5 phosphoglucomutase 5 -1.81 

Efemp1 epidermal growth factor-containing fibulin-like 

extracellular matrix protein 1 
-1.82 

Sulf2 sulfatase 2 -1.82 

Sfrp1 secreted frizzled-related protein 1 -1.84 

Crip1 cysteine-rich protein 1 (intestinal) -1.84 

Vat1l vesicle amine transport protein 1 homolog-like (T. 

californica) 
-1.85 

Srpx2 sushi-repeat-containing protein, X-linked 2 -2.00 

Cd34 CD34 antigen -2.01 

Hspb8 heat shock protein 8 -2.03 

Ppargc1a peroxisome proliferative activated receptor, gamma, 

coactivator 1 alpha 
-2.12 

Sorbs2 sorbin and SH3 domain containing 2 -2.13 

Ptgs1 prostaglandin-endoperoxide synthase 1 -2.14 

Ly6c1 lymphocyte antigen 6 complex, locus C1 -2.21 

Mmp3 matrix metallopeptidase 3 -2.28 

Stmn2 stathmin-like 2 -2.33 

Serping1 serine (or cysteine) peptidase inhibitor, clade G, 

member 1 
-2.33 

Ly6a lymphocyte antigen 6 complex, locus A -2.37 

Rgs4 regulator of G-protein signaling 4 -2.40 

Crip2 cysteine rich protein 2 -2.55 

Ptn pleiotrophin -2.65 

Dcn decorin -2.72 

Atoh8 atonal homolog 8 (Drosophila) -2.73 

Ly6c2 lymphocyte antigen 6 complex, locus C2 -2.80 

Gpr50 G-protein-coupled receptor 50 -2.96 

Erdr1 erythroid differentiation regulator 1 -3.12 

Akr1c18 aldo-keto reductase family 1, member C18 -3.25 

Tgfbi transforming growth factor, beta induced -3.62 
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Table 6.6. Genes associated with “cellular growth and proliferation” as defined by 

Ingenuity Pathway Analysis identified by both microarray and RNA Seq.  

 

Gene 

Symbol 
Description 

Fold Change 

(Rad51d-proficient v. 

Rad51d-deficient) 

Fcer1g Fc receptor, IgE, high affinity I, gamma polypeptide 1.95 

Csf1r colony stimulating factor 1 receptor 1.72 

Adm adrenomedullin 1.72 

Itgam integrin alpha M 1.71 

Serpine1 serine (or cysteine) peptidase inhibitor, clade E, member 

1 
1.60 

Plac8 placenta-specific 8 1.58 

Tyrobp TYRO protein tyrosine kinase binding protein 1.52 

Rarb retinoic acid receptor, beta -1.51 

Grem1 gremlin 1 -1.56 

Lims2 LIM and senescent cell antigen like domains 2 -1.60 

Nupr1 nuclear protein transcription regulator 1 -1.67 

Sfrp1 secreted frizzled-related protein 1 -1.84 

Clu clusterin -2.00 

Ppargc1a peroxisome proliferative activated receptor, gamma, 

coactivator 1 alpha 
-2.12 

Ptgs1 prostaglandin-endoperoxide synthase 1 -2.14 

Ptn pleiotrophin -2.65 

Dcn decorin -2.72 
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Table 6.7. Cell cycle progression genes identified by microarray and RNA Seq analysis. 

Genes are listed by decreasing fold change according to microarray analysis.  

 

Gene  

Symbol 
Description 

Fold Change  

(Rad51d-proficient v. 

Rad51d-deficient) 

Rad51d RAD51 homolog D 2.66 

Csf1r colony stimulating factor 1 receptor 1.72 

Adm adrenomedullin 1.72 

Rarb retinoic acid receptor, beta -1.51 

Ptx3 pentraxin related gene -1.54 

Nupr1 nuclear protein transcription regulator 1 -1.67 
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Figure 6.1. Rad51d expression and RNA quality assessment. (A) Rad51d expression was 

confirmed by RT-PCR. Amplification of a 380 bp gene product indicates the presence 

and expression of the Rad51d gene. Lanes 1 and 2 are Rad51d-proficient, and lanes 3 and 

4 are Rad51d-deficient MEFs. Amplification of Gapdh was used as a control. (B) 

Representative read-out of RNA Quality Assessment of one sample using an Agilent 

2100 Bioanalyzer and determination of RNA Integrity Number (RIN).  
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Figure 6.2. Biological functions as identified by Ingenuity Pathway Analysis (IPA) for 

the microarray data set. Genes with differential expression between Rad51d-proficient 

and Rad51d-deficient cells were categorized using IPA. The categories are defined based 

on the Ingenuity Knowledge Base that integrates bioinformatics data with literature. 

Parentheses indicate the specific cellular function associated with the genes in each 

category. Eleven categories with the most number of genes are displayed.    
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Figure 6.3. Biological functions as identified by Ingenuity Pathway Analysis (IPA) for 

the RNA Seq data set. Genes with differential expression between Rad51d-proficient and 

Rad51d-deficient cells were categorized using IPA. The categories are defined based on 

Ingenuity Knowledge Base that integrates bioinformatics data with literature. Parentheses 

indicate the specific cellular function associated with the genes in each category. Eleven 

categories with the most number of genes are displayed.    
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CHAPTER 7  

DISCUSSION 

Ovarian cancer is the deadliest of the five main types of gynecological cancer and leads 

to over 14,000 deaths per year in the United States (American Cancer Society, 2017). 

One characteristic of ovarian cancer is genome instability associated with mutations in 

DNA repair genes (Wang et al. 2012). In 2012 when these projects were initiated, there 

were three known ovarian cancer susceptibility genes: BRCA1, BRCA2, and the newly 

identified RAD51D. The two BRCA genes were also associated with an increased risk for 

breast cancer, but RAD51D was only recently confirmed as a breast cancer susceptibility 

gene (Kraus et al. 2017). Mutations in other DNA repair genes were also more recently 

associated with breast and ovarian cancers, including RAD51C (Coulet et al. 2013; 

Loveday et al. 2011; Pelttari et al. 2011; Thompson et al. 2012).  

The data presented in this dissertation elucidate mechanisms by which RAD51D 

functions to maintain genome integrity. In Chapter 3, I presented data that were published 

in the research article entitled “RNF138 interacts with RAD51D and is required for DNA 

interstrand crosslink repair.” This work identified a direct interaction between RAD51D 

and the novel E3 ubiquitin ligase RNF138 and demonstrated that the regions encoded by 

exons 5 and 7 along RNF138 are required for this interaction. In Chapter 4, I 

demonstrated that expression of two RAD51D missense mutations – K235R and K298R 

– confer cellular sensitivity to mitomycin C (MMC) in Rad51d-deficient mouse 

embryonic fibroblast (MEFs). Arginine substitution at these residues increased RAD51D 
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stability, suggesting that these residues are sites of ubiquitin modifications that target 

RAD51D for proteasomal degradation. Neither K235 nor K298 was required for 

homology directed repair of SceI induced double strand breaks, suggesting that these 

residues are required for RAD51D function specifically in response to crosslinks. In 

Chapter 5, I investigated how RAD51D protects the telomeres specifically in the 

presence of the DNA damaging agent 6-thioguanine (6TG). γ-H2AX foci were detected 

at the telomere regions more frequently in Rad51d-deficient compared with Rad51d-

proficient MEFs, and a higher frequency of 6TG-induced chromosome fusions were 

observed in Rad51d-deficient MEFs. In Chapter 6, gene expression profiles between 

Rad51d-proficient and -deficient MEFs were analyzed by microarray and RNA Seq. 

Ninety-one genes associated with “cell growth and proliferation” were differentially 

expressed in the Rad51d-deficient cells compared with the Rad51d-proficient cells. 

Further sorting of the data identified 21 genes that were associated specifically with “cell 

cycle progression.”  

Identification of lysine residues that confer sensitivity to thiopurine damage 

The complementation assays presented in Chapter 4 provide evidence that K235 and 

K298 along RAD51D promote HR-mediated repair of ICLs. I also investigated the 

function of RAD51D in response to 6TG induced damage, based on previous work 

demonstrating that Rad51d-deficient cells are more sensitive to 6TG treatment (Rajesh, 

Litvinchuk, et al. 2011). Follow-up experiments should include performing the 

complementation assays in the presence of 6TG to identify lysine residues along 

RAD51D necessary for function in response to these types of damage. I expect that 
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expression of K235R, but not K113R or K298R, in Rad51d-deficient MEFs will restore 

cellular resistance in the presence of 6TG.  

Lysine residues along RAD51D mediate interaction with RAD51C and XRCC2  

I hypothesized that increased MMC sensitivity in the presence of the K235R and K298R 

variants was due to disruption of the BCDX2 complex. As discussed in Chapter 2, the 

five RAD51 paralogs – RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 – form two 

distinct complexes in mammalian cells, and RAD51D specifically interacts with 

RAD51C and XRCC2 (Masson et al. 2001). Yeast-two-hybrid (Y2H) analysis was 

performed to determine if any of the variants fail to interact with either RAD51C or 

XRCC2. Arginine substitution at K235 and K298 did not affect interaction with RAD51C 

and XRCC2, suggesting that the BCDX2 complex is formed even in the absence of these 

residues. K201R did not interact with XRCC2 but possibly maintains interaction with 

RAD51C, and K261R interacted with RAD51C but not with XRCC2. These data offer 

insight into specific residues along RAD51D that mediate the interactions with other 

paralogs that has not previously been reported (Figure 7.1). Validation by co-

immunoprecipitation methods in mammalian cells is necessary. 

Interestingly, these data present a conundrum. Y2H data suggest the BCDX2 

complex is not formed in the presence of K261R, however, cellular resistance to MMC 

was decreased by 30%, but not eliminated, when K261R was expressed in Rad51d-

deficient MEFs. The data suggest that disruption of the interaction between RAD51D and 

XRCC2 is sufficient to decrease HR-mediated repair of ICLs, but not to fully eliminate 

repair. Therefore, these data are hinting towards a potential separation of function and 

suggest an alternative complex might form during HR-mediated repair of ICLs.  
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The RAD51 paralogs have approximately 30% identity between them, and only 

three lysine residues are conserved between RAD51D and other proteins in the BCDX2 

complex: K201 and K235 are conserved with RAD51B, and K298 is conserved with 

RAD51C. To further elucidate the function of each paralog within this complex, arginine 

substitutions in RAD51B and RAD51C at these positions can be introduced. 

Complementation assays using Rad51b- and Rad51c-deficient cells can be performed to 

determine if these conserved residues are required for cellular resistance to DNA 

damaging agents, and Y2H analysis would determine if these residues mediate interaction 

between the paralogs.  

Lysine residues are not required for repair of Sce-I induced double strand breaks 

Data in Chapter 4 present evidence that HR activity is similar in the presence of over-

expressed K0, K235R, and K298R compared with wild-type (Figure 4.9B), suggesting 

that lysine residues along RAD51D are not required for HR-mediated repair of double 

strand breaks (DSBs). K261R and K201R had decreased interaction with XRCC2 but not 

with RAD51C, and complemented Rad51d-deficiency in the presence of MMC. Follow-

up experiments should include these variants to confirm that HR-activity is not affected 

in the presence of these mutant proteins. I propose that arginine substitution at these 

residues leads to formation of a new RAD51 paralog complex comprised of RAD51B-

RAD51C-RAD51D (BCD) (Figure 7.1E). Exclusion of XRCC2 from this complex is 

predicted to diminish the activity of the paralogs during crosslink repair but may not be 

necessary for HR-mediated repair of DSBs. I would hypothesize that the activity of the 

BCD complex will be sufficient to repair SceI-induced DSBs.  
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Figure 7.1 Proposed RAD51 paralog complexes that function in response to interstrand 

crosslinks and double strand breaks. (A) RAD51D wild-type interacts with RAD51C and 

XRCC2 to form the BCDX2 complex that functions during homologous recombination-

mediated repair of interstrand crosslinks and double strand breaks. (B) RAD51D-K235R 

interacts with RAD51C and XRCC2. Repair of interstrand crosslinks is inhibited, and 

repair of double strand breaks is decreased (indicated by the small arrow). (C) RAD51D-

K298R interacts with RAD51C and XRCC2 repair of interstrand crosslinks is inhibited, 

and repair of double strand breaks is inhibited.  (D) RAD51D-K201R does not interact 

with either RAD51C or XRCC2 and still functions to repair interstrand crosslinks. I 

propose that double strand breaks will not be repaired in the presence of this variant. (E) 

RAD51D-K261R does not interact with XRCC2 but does interact with RAD51C to form 

a BCD complex. I propose that repair of double strand breaks will not occur in the 

presence of this variant.   
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Lysine combinations that restore RAD51D function 

Lysine residues can be reintroduced along K0 in different combinations to further 

elucidate the function of these residues during DNA repair. Site-directed mutagenesis 

should be performed to reintroduce K113 (RAD51D-SingleK113), K235 (RAD51D-

SingleK235), and K298 (RAD51D-SingleK298) into K0. A second lysine residue can be 

reintroduced in each SingleK mutant in the following combinations: K113 and K235 

(RAD51D-DoubleK113235), K113 and K298 (RAD51D-DoubleK113298), and K235 

and K298 (RAD51D-DoubleK235298). Finally, a RAD51D-TripleK can be generated by 

re-introducing K113 in RAD51D-DoubleK235298. Complementation assays using the 

newly generated lysine combination mutants can be performed in Rad51d-deficient 

MEFs as described in Chapter 4. It is predicted that none of the SingleK or DoubleK 

mutants will restore cellular resistance to MMC since each of them retains arginine 

substitution at one or more essential lysine residue. Complementation with the TripleK in 

the presence of MMC is predicted to restore cellular sensitivity to MMC. These data 

would indicate that only K113, K235, and K298 are required for RAD51D function 

during ICL repair.  

I also investigated ubiquitination along RAD51D as a regulatory mechanism of 

RAD51D. This post-translational modification (PTM) occurs along substrate proteins at 

lysine residues and at the N-terminus (Akutsu, Dikic, and Bremm 2016). RAD51D is 

ubiquitinated by the E3 ligase RNF138 (Yard et al. 2016), and K235 and K298 are 

potential ubiquitination sites. Lysine residue(s) targeted with the proteasome specific 

ubiquitin modification can be identified by measuring the stability of each RAD51D-

SingleK and -DoubleK variant. I propose that K235 and K298 along RAD51D are the 
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only sites of K48 chain addition along RAD51D. It is predicted that the stability of 

SingleK235 will be similar to K298R, and SingleK298 stability will be consistent with 

K235R. I expect that stability of RAD51D-DoubleK235298 will be consistent with wild-

type, further demonstrating that K48 chains are attached at these residues (Figure 7.2). 

Arginine substitution at both K235 and K298 was introduced to generate a RAD51D-

DoubleR235298 construct. If these two residues are the only sites of K48 ubiquitin chain 

addition, one would predict that proteasomal degradation of the DoubleR235298 protein 

would be inhibited and protein stability would increase (Figure 7.2D).  

Ubiquitin modification occurs along surface lysine residues rather than within a 

consensus sequence. In the absence of either K235 or K298, another residue may be 

modified. In vivo ubiquitination assays can be performed using each Myc-tagged 

SingleK113, SingleK235, SingleK298, DoubleK113235, DoubleK113298, 

DoubleK235298, or TripleK113235298 RAD51D constructs and HA-tagged ubiquitin to 

identify modification sites along each protein. It is expected that the ubiquitin pattern 

along RAD51D-SingleK113 will resemble K0, SingleK235 will be consistent with 

K298R, and SingleK298 will be similar to K235R. I hypothesize that ubiquitin signal 

along the RAD51D-DoubleK235298 will be stronger than SingleK235, SingleK298, and 

K0. These data will indicate that both residues are modified with separate ubiquitin 

chains. I hypothesize that K113 is not ubiquitinated, therefore, it is expected that 

RAD51D-DoubleK113235 and RAD51D-DoubleK113298 will have the same ubiquitin 

signal as the SingleK mutants. Furthermore, data presented in Chapter 4 suggests that a 3-

ubiquitin modification is absent along the K0 compared with wild-type, K235R, and 
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K298R proteins. I predict that these experiments will identify the lysine residue(s) that 

are modified with this specific ubiquitin chain. 

 

Figure 7.2. Stability of RAD51D protein variants. (A) RAD51D wild-type is modified 

with proteasomal specific (K48) ubiquitin chains at K235 and K298 and is degraded by 

the 26S proteasome. (B) SingleK235 is modified with a K48 chain at K235 and the 

protein is degraded. (C) SingleK298 is modified with K48 chain at K298 and the protein 

is degraded. (D) Arginine substitution at both K235 and K298 (DoubleR235298) 

eliminates the addition of K48 ubiquitin chain and inhibits proteasomal degradation of 

RAD51D. 
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Post-translational modifications along RAD51D by mass spectrometry 

Of the 20 amino acids, lysine is modified with the highest number of possible PTMs (Zee 

and Garcia 2012). One method for identifying ubiquitinated residues along a protein is 

tandem mass spectrometry (MS/MS) (Calderon-Celis, Encinar, and Sanz-Medel 2017). I 

propose that MS/MS analysis be performed on K0, K235R, and K298R to identify 

alternative modifications that occur in the absence of one or more lysine residues. 

Analysis of these RAD51D variants will confirm loss of a specific modification when a 

lysine residue is substituted with an arginine. Protein stability experiments demonstrated 

that K235R and K298R are more stable than wild-type, suggesting that a degradation 

specific ubiquitin modification has been lost. It is predicted that MS/MS analysis will 

identify a ubiquitin molecule attached to each of these lysine residues in the wild-type 

protein.  

To perform these experiments, RAD51D constructs can be expressed in 

mammalian cells, isolated by co-immunoprecipitation, trypsin digested, and analyzed 

using MS/MS. The trypsin digestion will cleave the isopeptide bond along a protein after 

lysine residues, producing protein fragments that have only a single lysine residue. When 

a ubiquitinated fragment is digested, a portion of the ubiquitin molecule remains on the 

residue, producing two β and γ ions for that fragment rather than one produced by an 

unmodified peptide. Thus, the fragmentation pattern of RAD51D can be used to identify 

lysine residues that have a ubiquitin molecule attached. MS/MS analysis of RAD51D 

wild-type will identify lysine residues along the protein that are modified with ubiquitin. I 

hypothesize that K235 and K298 will be modified with a ubiquitin molecule.  
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One limitation of MS/MS is that it cannot identify the chain type that is attached 

to a specific residue. To identify specific chains attached to lysine residues, in vitro 

ubiquitination assays could be performed. Myc-tagged RAD51D can be incubated with 

ubiquitin mutants that have only a single lysine residue available for chain elongation. 

RAD51D can be immunoprecipitated and analyzed by MS/MS. RAD51D is targeted for 

degradation by the proteasome and is ubiquitinated with K48 specific chain linkages, 

therefore, I expect one lysine residue along wild-type RAD51D to be modified with a 

K48 ubiquitin molecule. To further elucidate the dynamics of this modification, K0, 

K235R, and K298R can also be analyzed to determine if the K48 ubiquitin is added to an 

alternative lysine residue in the absence of either K235 or K298. Additionally, it will be 

interesting to test the K113R variant to determine if loss of ATPase activity affects the 

proteasomal specific ubiquitin modification.  

Ubiquitination is not the only PTM that can occur at lysine residues along a 

protein. Other modifications include SUMOylation, acetylation, and glycosylation, and 

can be identified by MS/MS analysis (Zee and Garcia 2012). K261 along RAD51D is 

predicted to be acetylated (Mertins et al. 2013).  The data presented in Chapter 4 

demonstrated that K261R decreases cellular resistance to MMC by 30% and disrupts 

RAD51D interaction with XRCC2. K261 can be substituted with glutamine to generate a 

K261Q mutant that will mimic acetylation at this residue (Kamieniarz and Schneider 

2009) and can be tested in the complementation assay. These data will determine if 

acetylation at this residue is required for cellular resistance to MMC.  

 



www.manaraa.com

153 

Identification of E2 ligases that interact with RNF138 to ubiquitinate RAD51D 

In addition to being modified by K48-linked chains and targeted for proteasomal 

degradation, RAD51D is also modified with other chain linkage types (Figure 4.7C). The 

E2 enzymes that interact with RNF138 to promote these alternative linkage arrangements 

remain unknown and performing a screen of E2 enzymes will provide further information 

into RAD51D ubiquitination. A screen performed in the laboratory of Stephen Jackson 

identified the UBE2D E2 enzyme as directly interacting with RNF138 (Schmidt et al. 

2015). The UBE2D family of E2 conjugating enzymes promotes several ubiquitin 

linkages along target proteins. For example, UBE2N catalyzes the addition of K63-linked 

ubiquitin chains to promote DNA repair (Sato et al. 2012). The yeast-two-hybrid (Y2H) 

screen that identified RNF138, also identified UBE2N/UBC13 as a direct interacting 

protein with RAD51D (Yard 2011), and I hypothesize that this E2 promotes K63-

linkages along RAD51D, which could be tested in future studies.  

K235 and K298 requirement for RAD51 and BRCA1 localization sites of damage 

Data presented in Chapter 4 demonstrated that loss of Rad51d decreases RAD51 foci 

formation in the presence of MMC. It is predicted that K235 and K298 fail to 

complement Rad51d-deficiency in the presence of MMC because they are required for 

RAD51 recruitment to the site of damage, and disruption of RAD51 localization prevents 

HR progression. To test this hypothesis, K235R and K298R can be expressed in Rad51d-

deficient MEFs and RAD51 foci can be detected by immunofluorescence 24 h, 48 h, and 

72 h after MMC treatment. It is expected that cells expressing K235R and K298R will 

have less RAD51 foci positive nuclei compared with cells expressing wild-type 

RAD51D. These experiments will determine if each lysine is required specifically for 
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RAD51 recruitment to damage sites. K113R can be included in these experiments to 

determine if the ATPase activity of RAD51D mediates RAD51 recruitment in response to 

ICLs.  

In addition to the BCDX2 complex, other proteins function during HR to recruit 

RAD51 to damage. In response to DNA crosslinks, BRCA1 is required for RAD51 

recruitment to damage (Bhattacharyya et al. 2000), and it is hypothesized that the 

BCDX2 complex functions upstream of BRCA1. To investigate this, BRCA1 foci 

formation after MMC treatment can be detected in Rad51d-deficient and -proficient 

MEFs. It is expected that the number of BRCA1 positive nuclei will be higher in Rad51d-

proficient MEFs compared with Rad51d-deficient MEFs when challenged with MMC. 

K235R and K298R can be expressed in Rad51d-deficient MEFs treated with MMC and 

BRCA1 foci can be detected. These experiments will determine if K235 or Ly298 

specifically mediate BRCA1 localization in the presence of interstrand crosslinks.  

Generating K235R and K298R substitutions in RAD51D using CRISPR-Cas9  

Within the past 5 years, a new scientific tool – known as CRISPR (clustered regularly 

interspaced short palindromic repeats) – has become available that allows for mutations 

to be introduced in genome of a cell (Cong et al. 2013). This technology uses an 

endonuclease, Cas9, to generate nicks in DNA strands at a specific locus. Briefly, 

eukaryotic cells are transfected with a plasmid encoding the Cas9 enzyme and a short 

guide RNA (sgRNA) complementary to a sequence along the genome is targeted. The 

sgRNA localizes the Cas9 enzyme where it generates a nick in the DNA and introduces 

the desired point mutations within a gene. Mutations can now be introduced into a locus 

without generating a nick in the DNA strand using a catalytically inactive Cas9 (Gaudelli 
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et al. 2017).  For applications in my work, CRISPR can be used to introduce arginine 

substitution at the codons along RAD51D for K113 (MEF-RAD51DK113R), K235 

(MEF-RAD51DK235R), K298 (MEF-RAD51DK298R), and all lysines (MEF-

RAD51DK0) in the Rad51d gene of Rad51d-proficient MEFs. As a positive control cell 

line, arginine substitution can be introduced at Lys159 (MEF-K159R) along RAD51D; 

this residue is non-conserved between Mus musculus and Homo sapiens and is predicted 

to be non-essential for RAD51D function.  

First, cell survival assays in the presence of DNA damaging agents, such as MMC 

and 6TG, could be performed in these newly generated cell lines. Second, to identify 

lysine residue(s) required for RAD51 recruitment, each cell line could be challenged with 

MMC and IR, and foci formation detected as described in Chapter 4. My hypothesis is 

that RAD51 foci will only form in the MEF-K159R cell line, and not in the other mutant 

cell lines. Loss of RAD51 foci in the MEF-K113R cell lines will indicate that ATPase 

activity of RAD51D is necessary for RAD51 recruitment. Each lysine mutant cell line 

can be challenged with 6TG and telomere stability can be measured as described in 

Chapter 5. I hypothesize that MEFs expressing K0 and K113R will have telomeric 

defects, such as fusions, the presence of 6TG. These data would determine if ATPase 

activity of RAD51D is necessary for its activity in maintaining telomere integrity.  

Investigations into RNF138 mediated interstrand crosslink repair 

Most of the work presented in this dissertation has focused on lysine residues along 

RAD51D that are required for cellular resistance to DNA damaging agents, and on 

detecting ubiquitination of RAD51D, a PTM mediated by the E3 ligase RNF138. The 

Pittman laboratory and two other groups have demonstrated that RNF138 promotes HR-
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mediated repair of ICLs and DSBS, and further investigations into RNF138 will provide 

insight into how it functions during DNA damage repair. RNF138 contains a really 

interesting new gene (RING) catalytic domain, three zinc finger (ZF) motifs, and a 

ubiquitin interacting motif (UIM). Mutations in the RING domain decrease RAD51D 

ubiquitination and increase its stability (Yard et al. 2016), and deletion of the ZFs inhibits 

RNF138-mediated ubiquitination of Ku80 (Ismail et al. 2015).  

To date, no investigations into the UIM of RNF138 have been reported. This 

motif is characterized by a 20-amino acid protein sequence: X-Ac-Ac-Ac-Ac-ϕ-X-X-Ala-

X-X-X-Ser-X-X-Ac-X-X-X-X, where ϕ represents a hydrophobic residue, Ac represents 

an acidic residue, and X represents non-conserved residues (Fisher et al. 2003; Hofmann 

and Falquet 2001). UIMs bind mono-ubiquitin modifications along proteins (Fisher et al. 

2003; Woelk et al. 2006), a function important for E3 ligase activity. For example, 

mutations in the UIM domains of BRCA1/RAP80 prevent its binding to K63-linked 

chains generated by RNF168 and inhibits HR progression (Kim, Chen, and Yu 2007). I 

propose that the UIM along RNF138 has a similar function and is required for RNF318 

interaction with the CtIP endonuclease. Site-directed mutagenesis can be performed to 

introduce amino acid substitutions at Ala236 and Ser240 in the UIM of RNF138. 

Immunoprecipitation experiments can be performed to determine if RNF138 UIM 

mutants fail to interact with CtIP. To determine if the UIM is required for cellular 

resistance to interstrand crosslinks, each UIM mutant can be expressed in MEFs that do 

not express endogenous RNF138 in the presence of MMC. Together, these data will 

determine 1. if the UIM along RNF138 mediates its interaction with CtIP, and 2. if this 

motif is required for crosslink repair.   
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Proposed model of RAD51D ubiquitination during interstrand crosslink repair 

In this dissertation, I described work towards understanding mechanisms of RAD51D 

that promote genomic stability. These studies identified two lysine residues – Lys 235 

and K298 – along RAD51D required for cellular resistance to MMC and demonstrated 

that the protein is stabilized when a mutation occurs at these positions. From the data 

collected, I propose that RAD51D ubiquitination is essential for recruitment of RAD51 to 

the double strand break during homologous recombination-mediated repair of interstrand 

crosslinks (Figure 7.3).  

As described in Chapter 2, the interstrand crosslink (ICL) is first bound by the 

Fanconi Anemia (FA) core complex (Figure 2.6). The FANCD2/FANCI heterodimer 

initiates excision of the crosslink from the top DNA strands, and nucleotide excision 

repair and translesion synthesis proteins facilitate removal of the lesion. Following 

activity of FANCD2/FANCI, the CtIP endonuclease is recruited to the newly generated 

double strand break (DSB). Studies performed in the laboratory of Stephen Jackson 

identified a direct interaction between RNF138 and the CtIP exonuclease in response to 

IR (Schmidt et al. 2015), and I propose that this interaction occurs during ICL repair 

(Figure 7.3). Localization of RNF138 to the DSB promotes recruitment of the BCDX2 

complex through the RNF138/RAD51D interaction. I hypothesize that RNF138 generates 

K63-linked ubiquitin chains along RAD51D as a mechanism to recruit the 

BRCA1/RAP80 complex and RAD51 to the damage site. Following RAD51 localization, 

I propose that RAD51D is ubiquitinated at K235 and K298 to target the protein for 

proteasomal degradation, effectively removing the BCDX2 complex from the DNA. In 

the presence of K235R or K298R, RAD51D will not be targeted for degradation and 
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RAD51 loading will be inhibited. Clearing the BCDX2 complex for the break will allow 

RAD51 to bind the single strand overhang generated by CtIP, and to facilitate the 

homology search using the second DNA double helix as a template.  

 

 

Figure 7.3. Proposed model of RAD51D ubiquitination during DNA interstrand crosslink 

repair. (1) Following activity of FA, NER, and TLS proteins, RNF138 binds to CtIP and, 

the BCDX2 complex is localized to the DSB through the interaction between RAD51D 

and RNF138. (2) RAD51D is ubiquitinated by RNF138/UBC13 with K63 linked 

ubiquitin. (3) The RAP80 subunit of the BRCA1/RAP80 complex binds the ubiquitin 

chain along RAD51D to recruit the complex to the damage. (4) Following BRCA1 

localization, RAD51 is recruited to the DSB. (5) RNF138 promotes K48 linked ubiquitin 

chain formation along wild-type RAD51D to target the protein to the proteasome. This 

degradation is a mechanism of removing the BCDX2 complex from the damage site. 
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RAD51 filaments coat the single strand overhang to prepare for homology search and 

strand invasion. (6) Arginine substitution at K235 (K235R) or K298 (not shown) prevents 

ubiquitination of RAD51D, preventing the BCDX2 complex from being cleared from the 

break and inhibiting RAD51-mediated homology search.   
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Table A.1. Genes identified by microarray analysis with differential expression between 

Rad51d-proficient and Rad51d-deficient primary mouse embryonic fibroblast cell lines. 

Genes are listed in order of increasing fold change.   

 

Gene Symbol Description 

Fold Change 

(Rad51d-proficient 

v. Rad51d-deficient) 

FDR 

p-value 
Group 

Lyz2 lysozyme 2 2.90 0.045698 Coding 

Rad51d RAD51 homolog D 2.66 0.002589 Complex 

Slfn9 schlafen 9 2.63 0.060793 Coding 

C1qb 

complement component 1, q 

subcomponent, beta 

polypeptide 

2.53 0.064458 Coding 

  
2.49 0.063475 NonCoding 

  
2.42 0.083478 NonCoding 

Il1rl1 interleukin 1 receptor-like 1 2.38 0.002589 Coding 

Ifit1 

interferon-induced protein 

with tetratricopeptide 

repeats 1 

2.35 0.224665 Coding 

2010300F17Ri

k 

RIKEN cDNA 2010300F17 

gene 
2.28 0.012221 NonCoding 

Lyz1 lysozyme 1 2.28 0.03706 Coding 

  
2.21 0.056045 NonCoding 

Dynap dynactin associated protein 2.18 0.042872 Coding 

Usp18 
ubiquitin specific peptidase 

18 
2.16 0.171789 Coding 

Hoxd13 homeobox D13 2.13 0.006665 Coding 

Rnf213 ring finger protein 213 2.04 0.100862 Complex 

Slfn10-ps schlafen 10, pseudogene 1.98 0.032321 Complex 

Uck2 uridine-cytidine kinase 2 1.96 0.012221 Coding 

Slc7a8 

solute carrier family 7 

(cationic amino acid 

transporter, y+ system), 

member 8 

1.96 0.018935 Coding 

  
1.96 0.021149 NonCoding 

Adam12 

a disintegrin and 

metallopeptidase domain 12 

(meltrin alpha) 

1.95 0.008406 Complex 

Fcer1g 

Fc receptor, IgE, high 

affinity I, gamma 

polypeptide 

1.95 0.036185 Complex 

Cdh10 cadherin 10 1.94 0.008153 Complex 

Loxl3 lysyl oxidase-like 3 1.93 0.041649 Complex 

Asb5 
ankyrin repeat and SOCs 

box-containing 5 
1.92 0.006665 Coding 

  
1.90 0.026432 NonCoding 

  
1.90 0.027718 NonCoding 

Lilrb4 

leukocyte immunoglobulin-

like receptor, subfamily B, 

member 4 

1.90 0.226172 Coding 

Slc16a3 solute carrier family 16 1.89 0.00868 Complex 
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(monocarboxylic acid 

transporters), member 3 

Speer8-ps1 

spermatogenesis associated 

glutamate (E)-rich protein 8, 

pseudogene 1 

1.87 0.012722 Complex 

Gm6091 predicted pseudogene 6091 1.87 0.018935 Pseudogene 

Lipg lipase, endothelial 1.85 0.012221 Complex 

Bst2 
bone marrow stromal cell 

antigen 2 
1.79 0.30203 Coding 

Angptl7 angiopoietin-like 7 1.78 0.02546 Coding 

Gm21847 predicted gene, 21847 1.78 0.027453 Complex 

Htr1b 
5-hydroxytryptamine 

(serotonin) receptor 1B 
1.78 0.05327 Complex 

Gm11116 predicted gene 11116 1.77 0.3617 Coding 

Mfsd2a 

major facilitator 

superfamily domain 

containing 2A 

1.75 0.007187 Complex 

Rasal2 RAS protein activator like 2 1.75 0.029268 Complex 

Gm16464 predicted gene 16464 1.73 0.005385 Pseudogene 

Csf1r 
colony stimulating factor 1 

receptor 
1.72 0.021149 Complex 

Adm adrenomedullin 1.72 0.045499 Coding 

Bcl2a1b 
B cell leukemia/lymphoma 

2 related protein A1b 
1.72 0.113603 Coding 

  
1.72 0.129933 NonCoding 

Itgam integrin alpha M 1.71 0.021372 Coding 

Col12a1 collagen, type XII, alpha 1 1.71 0.066342 Complex 

Ccl9 
chemokine (C-C motif) 

ligand 9 
1.71 0.086773 Complex 

Ccnyl1 cyclin Y-like 1 1.70 0.003613 Complex 

Speer7-ps1 

spermatogenesis associated 

glutamate (E)-rich protein 7, 

pseudogene 1 

1.70 0.040525 Complex 

Adam8 
a disintegrin and 

metallopeptidase domain 8 
1.70 0.10941 Complex 

Gm24325 predicted gene, 24325 1.70 0.25208 NonCoding 

Myd88 
myeloid differentiation 

primary response gene 88 
1.70 0.31687 Complex 

  
1.69 0.140823 NonCoding 

  
1.69 0.160967 NonCoding 

Lgals3bp 
lectin, galactoside-binding, 

soluble, 3 binding protein 
1.69 0.234481 Complex 

Htr2a 
5-hydroxytryptamine 

(serotonin) receptor 2A 
1.69 0.286288 Coding 

Mir380 microRNA 380 1.69 0.345875 NonCoding 

Cd180 CD180 antigen 1.68 0.15251 Coding 

  
1.67 0.120419 NonCoding 

Lrrc15 
leucine rich repeat 

containing 15 
1.67 0.256253 Coding 

  
1.66 0.190557 NonCoding 

  
1.66 0.359297 NonCoding 

Herc3 hect domain and RLD 3 1.65 0.012221 Complex 

Lcp1 lymphocyte cytosolic 1.65 0.013723 Complex 
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protein 1 

Hmga2-ps1 
high mobility group AT-

hook 2, pseudogene 1 
1.65 0.015471 Complex 

Slit2 slit homolog 2 (Drosophila) 1.65 0.021149 Complex 

Slc1a6 

solute carrier family 1 (high 

affinity aspartate/glutamate 

transporter), member 6 

1.65 0.036394 Coding 

  
1.65 0.125997 NonCoding 

Gp49a glycoprotein 49 A 1.65 0.168662 Complex 

  
1.65 0.171385 NonCoding 

Ldlr 
low density lipoprotein 

receptor 
1.64 0.018459 Coding 

Lrrc32 
leucine rich repeat 

containing 32 
1.64 0.108744 Coding 

Slfn2 schlafen 2 1.63 0.014916 Coding 

  
1.63 0.065511 NonCoding 

  
1.63 0.100342 NonCoding 

Stat1 
signal transducer and 

activator of transcription 1 
1.63 0.306519 Coding 

Alox5ap 

arachidonate 5-

lipoxygenase activating 

protein 

1.62 0.100537 Coding 

  
1.62 0.265718 NonCoding 

  
1.61 0.118276 NonCoding 

  
1.61 0.325426 Other 

Spcs3 

signal peptidase complex 

subunit 3 homolog (S. 

cerevisiae) 

1.60 0.002589 Coding 

Serpine1 

serine (or cysteine) 

peptidase inhibitor, clade E, 

member 1 

1.60 0.003921 Coding 

Dok1 docking protein 1 1.60 0.014694 Complex 

Grem2 

gremlin 2 homolog, cysteine 

knot superfamily (Xenopus 

laevis) 

1.60 0.024993 Coding 

Nipal1 
NIPA-like domain 

containing 1 
1.60 0.035013 Coding 

  
1.60 0.074161 NonCoding 

Tnfsf9 

tumor necrosis factor 

(ligand) superfamily, 

member 9 

1.60 0.215125 Coding 

Tnc 
tenascin C; tenascin C 

(hexabrachion) 
1.59 0.021149 Coding 

  
1.59 0.293309 NonCoding 

  
1.59 0.293309 NonCoding 

  
1.59 0.293309 NonCoding 

  
1.59 0.293309 NonCoding 

Plac8 placenta-specific 8 1.58 0.043229 Complex 

  
1.58 0.059964 NonCoding 

  
1.58 0.14483 NonCoding 

  
1.58 0.166231 NonCoding 

Tnn tenascin N 1.58 0.320986 Coding 

Lsp1 lymphocyte specific 1 1.57 0.042888 Complex 
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Msr1 
macrophage scavenger 

receptor 1 
1.57 0.071559 Complex 

Gm12957 predicted gene 12957 1.57 0.133047 Complex 

C1qc 
complement component 1, q 

subcomponent, C chain 
1.57 0.154394 Complex 

  
1.57 0.233862 NonCoding 

Gm22889 predicted gene, 22889 1.56 0.045764 NonCoding 

  
1.56 0.138796 NonCoding 

  
1.56 0.15867 NonCoding 

Phf11d PHD finger protein 11D 1.55 0.090001 Complex 

Slfn8 schlafen 8 1.55 0.096014 Coding 

Tll1 tolloid-like 1.55 0.132532 Coding 

  
1.55 0.168775 NonCoding 

  
1.55 0.337992 NonCoding 

Xaf1 XIAP associated factor 1 1.55 0.346964 Complex 

Phlpp1 
PH domain and leucine rich 

repeat protein phosphatase 1 
1.54 0.008675 Complex 

Clec2d 
C-type lectin domain family 

2, member d 
1.54 0.037978 Coding 

C1ql3 C1q-like 3 1.54 0.079766 Complex 

Bcl2a1a 
B cell leukemia/lymphoma 

2 related protein A1a 
1.54 0.109343 Coding 

  
1.54 0.176695 NonCoding 

Specc1 

sperm antigen with calponin 

homology and coiled-coil 

domains 1; cytospin B 

1.53 0.005385 Complex 

Flt4 FMS-like tyrosine kinase 4 1.53 0.023519 Complex 

Tlr7 toll-like receptor 7 1.53 0.090471 Complex 

Ulbp1 UL16 binding protein 1 1.53 0.095694 Coding 

Samd9l 
sterile alpha motif domain 

containing 9-like 
1.53 0.357599 Coding 

  
1.52 0.120116 NonCoding 

Tyrobp 
TYRO protein tyrosine 

kinase binding protein 
1.52 0.137837 Coding 

Rtp4 
receptor transporter protein 

4 
1.52 0.188955 Coding 

  
1.52 0.276675 NonCoding 

Gm23536 predicted gene, 23536 1.52 0.333575 NonCoding 

  
1.52 0.357777 NonCoding 

Gm26652 predicted gene, 26652 1.52 0.383691 NonCoding 

Tfap2b 
transcription factor AP-2 

beta 
1.51 0.027738 Complex 

Ifih1 
interferon induced with 

helicase C domain 1 
1.51 0.142591 Complex 

Rarb retinoic acid receptor, beta -1.51 0.012221 Complex 

Trnp1 
TMF1-regulated nuclear 

protein 1 
-1.51 0.023945 Complex 

Plp1 
proteolipid protein (myelin) 

1 
-1.51 0.025322 Complex 

Nr4a1 
nuclear receptor subfamily 

4, group A, member 1 
-1.51 0.028479 Coding 

Rnf166 ring finger protein 166 -1.51 0.029746 Complex 

Nfkbia nuclear factor of kappa light -1.51 0.030054 Coding 
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polypeptide gene enhancer 

in B cells inhibitor, alpha 

Gm26437 predicted gene, 26437 -1.51 0.031461 NonCoding 

Zdhhc15 
zinc finger, DHHC domain 

containing 15 
-1.51 0.073282 Coding 

Rnu3b4 U3B small nuclear RNA 4 -1.51 0.088601 NonCoding 

Gm13105 predicted gene 13105 -1.51 0.132926 Complex 

  
-1.51 0.141666 NonCoding 

Ccdc3 
coiled-coil domain 

containing 3 
-1.51 0.181439 Coding 

Gm21860 predicted gene, 21860 -1.51 0.202291 Coding 

Gm21748 predicted gene, 21748 -1.51 0.202291 Coding 

mt-Ts2 
mitochondrially encoded 

tRNA serine 2 
-1.51 0.245861 NonCoding 

Epha4 Eph receptor A4 -1.51 0.354087 Complex 

Tmem59l 
transmembrane protein 59-

like 
-1.52 0.008675 Coding 

Mdk-ps1 midkine pseudogene 1 -1.52 0.00868 Complex 

Gm21857 predicted gene, 21857 -1.52 0.0103 Complex 

Cyp26b1 

cytochrome P450, family 

26, subfamily b, 

polypeptide 1 

-1.52 0.026432 Coding 

Dcaf12l1 
DDB1 and CUL4 associated 

factor 12-like 1 
-1.52 0.065748 Coding 

Ackr3 
atypical chemokine receptor 

3 
-1.52 0.074004 Coding 

  
-1.52 0.118988 NonCoding 

Gm6665 predicted gene 6665 -1.52 0.135963 Coding 

Gm23690 predicted gene, 23690 -1.52 0.155074 NonCoding 

AW551984 
expressed sequence 

AW551984 
-1.52 0.161282 Complex 

Pdgfra 

platelet derived growth 

factor receptor, alpha 

polypeptide 

-1.52 0.175798 Complex 

Tmlhe 
trimethyllysine hydroxylase, 

epsilon 
-1.52 0.311299 Coding 

Gm22130 predicted gene, 22130 -1.52 0.312939 NonCoding 

  
-1.52 0.369061 NonCoding 

Sord sorbitol dehydrogenase -1.53 0.0103 Coding 

Prss12 
protease, serine 12 

neurotrypsin (motopsin) 
-1.53 0.035401 Coding 

Klf4 Kruppel-like factor 4 (gut) -1.53 0.042838 Coding 

Mxd4 Max dimerization protein 4 -1.53 0.049785 Complex 

Lrrn1 
leucine rich repeat protein 

1, neuronal 
-1.53 0.090325 Complex 

Gm13295 predicted gene 13295 -1.53 0.100342 Complex 

Rnu11 U11 small nuclear RNA -1.53 0.142063 NonCoding 

Des desmin -1.53 0.155258 Complex 

Msx2 
msh homeobox 2; homeo 

box, msh-like 2 
-1.53 0.156102 Coding 

Gm23815 predicted gene, 23815 -1.53 0.17101 NonCoding 

Gm26465 predicted gene, 26465 -1.53 0.173336 NonCoding 

Gm25021 predicted gene, 25021 -1.53 0.173336 NonCoding 
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Gm24864 predicted gene, 24864 -1.53 0.173336 NonCoding 

Gm24424 predicted gene, 24424 -1.53 0.173336 NonCoding 

Gm24389 predicted gene, 24389 -1.53 0.173336 NonCoding 

Serpinb9g 

serine (or cysteine) 

peptidase inhibitor, clade B, 

member 9g 

-1.53 0.176221 Coding 

Ptprq 

protein tyrosine 

phosphatase, receptor type, 

Q 

-1.53 0.236494 Coding 

Snord118 
small nucleolar RNA, C/D 

box 118 
-1.53 0.280828 NonCoding 

Csn3 casein kappa -1.54 0.018459 Complex 

Mdk 
midkine; midkine (Mdk), 

transcript variant 1, mRNA. 
-1.54 0.021825 Coding 

Wwtr1 
WW domain containing 

transcription regulator 1 
-1.54 0.034744 Coding 

Id1 inhibitor of DNA binding 1 -1.54 0.041352 Coding 

Gm6644 predicted gene 6644 -1.54 0.054684 Pseudogene 

Hist1h1c 
histone cluster 1, H1c; 

histone 1, H1c 
-1.54 0.054695 Coding 

Ptx3 pentraxin related gene -1.54 0.071195 Complex 

  
-1.54 0.09568 NonCoding 

Peg3 paternally expressed 3 -1.54 0.346899 Complex 

Snord45b 
small nucleolar RNA, C/D 

box 45B 
-1.54 0.384319 NonCoding 

Gm16418 predicted pseudogene 16418 -1.54 0.39616 Pseudogene 

Krt8 keratin 8 -1.55 0.021149 Coding 

Rragd Ras-related GTP binding D -1.55 0.048207 Complex 

Gstk1 
glutathione S-transferase 

kappa 1 
-1.55 0.054695 Complex 

Gm12177 predicted gene 12177 -1.55 0.067603 Complex 

Tgfb2 
transforming growth factor, 

beta 2 
-1.55 0.163647 Coding 

  
-1.55 0.176143 NonCoding 

  
-1.56 0.012415 NonCoding 

Lrrn4 
leucine rich repeat neuronal 

4 
-1.56 0.013606 Complex 

Dusp4 
dual specificity phosphatase 

4 
-1.56 0.018732 Coding 

Rcan1 regulator of calcineurin 1 -1.56 0.021547 Coding 

Dlx5 distal-less homeobox 5 -1.56 0.023147 Coding 

Tbx2 T-box 2 -1.56 0.024189 Coding 

Smad6 SMAD family member 6 -1.56 0.035412 Complex 

Pdgfb 
platelet derived growth 

factor, B polypeptide 
-1.56 0.046955 Coding 

Tnnt2 troponin T2, cardiac -1.56 0.048122 Coding 

4833412C05R

ik 

RIKEN cDNA 4833412C05 

gene 
-1.56 0.127455 NonCoding 

Grem1 gremlin 1 -1.56 0.234481 Complex 

  
-1.56 0.251222 NonCoding 

  
-1.56 0.264247 NonCoding 

Gm25107 predicted gene, 25107 -1.56 0.35493 NonCoding 

Scrn1 secernin 1 -1.57 0.006665 Complex 
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Slc43a3 
solute carrier family 43, 

member 3 
-1.57 0.008406 Complex 

Ngfr 

nerve growth factor receptor 

(TNFR superfamily, 

member 16) 

-1.57 0.012221 Coding 

Ank progressive ankylosis -1.57 0.021252 Complex 

Anxa8 annexin A8 -1.57 0.027453 Coding 

Apod apolipoprotein D -1.57 0.071206 Complex 

Ifnz interferon zeta -1.57 0.111888 Coding 

  
-1.57 0.137222 NonCoding 

  
-1.57 0.222824 NonCoding 

Snord111 
small nucleolar RNA, C/D 

box 111 
-1.57 0.253654 NonCoding 

  
-1.57 0.279724 NonCoding 

Gpx7 glutathione peroxidase 7 -1.58 0.0103 Coding 

Ndrg2 
N-myc downstream 

regulated gene 2 
-1.58 0.011736 Coding 

Rhoj 
ras homolog gene family, 

member J 
-1.58 0.012221 Complex 

Myo16 myosin XVI -1.59 0.011736 Complex 

2810047C21R

ik1 

RIKEN cDNA 2810047C21 

gene 1 
-1.59 0.012221 Complex 

Gm12138 predicted gene 12138 -1.59 0.02012 Pseudogene 

Chac1 
ChaC, cation transport 

regulator 1 
-1.59 0.021844 Coding 

Fas 
Fas (TNF receptor 

superfamily member 6) 
-1.59 0.03111 Coding 

Gm7040 predicted gene 7040 -1.59 0.040076 Coding 

Gm26251 predicted gene, 26251 -1.59 0.143099 NonCoding 

Cyp1b1 
cytochrome P450, family 1, 

subfamily b, polypeptide 1 
-1.59 0.189484 Coding 

  
-1.59 0.242176 NonCoding 

  
-1.59 0.367489 NonCoding 

Vmn1r90 vomeronasal 1 receptor 90 -1.60 0.006574 Complex 

Acot13 acyl-CoA thioesterase 13 -1.60 0.026432 Coding 

Lims2 
LIM and senescent cell 

antigen like domains 2 
-1.60 0.047196 Coding 

Bmp4 
bone morphogenetic protein 

4 
-1.60 0.168775 Complex 

Gm24518 predicted gene, 24518 -1.60 0.198184 NonCoding 

Prr32 proline rich 32 -1.60 0.280683 Coding 

Impact 
impact, RWD domain 

protein 
-1.60 0.302947 Complex 

D130007C19R

ik 

RIKEN cDNA 

D130007C19 gene 
-1.60 0.394347 Complex 

Pmp22 peripheral myelin protein 22 -1.61 0.010973 Complex 

Cdkn1a 
cyclin-dependent kinase 

inhibitor 1A (P21) 
-1.61 0.012221 Coding 

Gsta4 
glutathione S-transferase, 

alpha 4 
-1.61 0.021149 Complex 

Fabp3 
fatty acid binding protein 3, 

muscle and heart 
-1.61 0.025827 Coding 

Gstm2 glutathione S-transferase, -1.61 0.030189 Complex 
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mu 2 

Gm13606 predicted gene 13606 -1.61 0.061815 Complex 

G530011O06

Rik 

RIKEN cDNA 

G530011O06 gene 
-1.61 0.068059 NonCoding 

Ly6i 
lymphocyte antigen 6 

complex, locus I 
-1.61 0.114041 Coding 

Gm12840 predicted gene 12840 -1.61 0.134048 NonCoding 

Mmp13 matrix metallopeptidase 13 -1.61 0.387046 Coding 

Gm6736 predicted gene 6736 -1.62 0.022682 Pseudogene 

Mgst1 
microsomal glutathione S-

transferase 1 
-1.63 0.005341 Complex 

Serpinb8 

serine (or cysteine) 

peptidase inhibitor, clade B, 

member 8 

-1.63 0.014313 Complex 

Igfbp6 
insulin-like growth factor 

binding protein 6 
-1.63 0.019098 Coding 

Perp 
PERP, TP53 apoptosis 

effector 
-1.63 0.083962 Coding 

Gm24310 predicted gene, 24310 -1.63 0.203398 NonCoding 

DQ267102 snoRNA DQ267102 -1.64 0.109678 NonCoding 

Gabrb3 

gamma-aminobutyric acid 

(GABA) A receptor, subunit 

beta 3 

-1.64 0.135992 Complex 

Snora31 
small nucleolar RNA, 

H/ACA box 31 
-1.64 0.171789 NonCoding 

Gm25934 predicted gene, 25934 -1.64 0.291397 NonCoding 

Zim1 zinc finger, imprinted 1 -1.64 0.390479 Coding 

Gm24289 predicted gene, 24289 -1.64 0.393882 NonCoding 

F11r F11 receptor -1.65 0.021149 Complex 

Mest 
mesoderm specific 

transcript 
-1.65 0.02163 Complex 

Heg1 HEG homolog 1 (zebrafish) -1.65 0.02333 Complex 

Ddit3 
DNA-damage inducible 

transcript 3 
-1.65 0.023934 Complex 

Gm11496 predicted gene 11496 -1.65 0.056358 NonCoding 

Edn1 endothelin 1 -1.65 0.060793 Coding 

Pcp4l1 
Purkinje cell protein 4-like 

1 
-1.65 0.071348 Coding 

Dhrs3 
dehydrogenase/reductase 

(SDR family) member 3 
-1.65 0.072086 Complex 

Casp4 
caspase 4, apoptosis-related 

cysteine peptidase 
-1.65 0.292732 Complex 

Myrf myelin regulatory factor -1.66 0.002589 Coding 

Popdc2 popeye domain containing 2 -1.66 0.021149 Complex 

Car3 carbonic anhydrase 3 -1.66 0.087357 Complex 

Sncg synuclein, gamma -1.66 0.11119 Coding 

Nupr1 
nuclear protein transcription 

regulator 1 
-1.67 0.012221 Complex 

Gm15242 predicted gene 15242 -1.67 0.033042 Complex 

Gm12892 predicted gene 12892 -1.67 0.051954 Pseudogene 

Gm26230 predicted gene, 26230 -1.67 0.10993 NonCoding 

Gm26498 predicted gene, 26498 -1.67 0.10993 NonCoding 

Sprr2k small proline-rich protein -1.67 0.354951 Coding 
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2K 

Prl2c5 
prolactin family 2, 

subfamily c, member 5 
-1.68 0.013826 Complex 

Krt18 keratin 18 -1.68 0.014916 Coding 

Serpinb6b 

serine (or cysteine) 

peptidase inhibitor, clade B, 

member 6b 

-1.68 0.035718 Complex 

Gm6175 predicted gene 6175 -1.68 0.047339 Pseudogene 

Thbd thrombomodulin -1.68 0.077084 Coding 

Aqp5 aquaporin 5 -1.69 0.005385 Coding 

Prg4 

proteoglycan 4 

(megakaryocyte stimulating 

factor, articular superficial 

zone protein) 

-1.69 0.02854 Coding 

Gm22496 predicted gene, 22496 -1.69 0.0688 NonCoding 

Prex2 

phosphatidylinositol-3,4,5-

trisphosphate-dependent 

Rac exchange factor 2 

-1.69 0.168246 Complex 

Nnt 
nicotinamide nucleotide 

transhydrogenase 
-1.70 0.003352 Complex 

Myh11 
myosin, heavy polypeptide 

11, smooth muscle 
-1.70 0.011994 Coding 

Neto1 
neuropilin (NRP) and 

tolloid (TLL)-like 1 
-1.70 0.024189 Coding 

Acot2 acyl-CoA thioesterase 2 -1.70 0.039102 Coding 

  
-1.70 0.039102 NonCoding 

  
-1.70 0.039102 NonCoding 

Cemip 
cell migration inducing 

protein, hyaluronan binding 
-1.71 0.023945 Complex 

Sparcl1 SPARC-like 1 -1.71 0.071248 Coding 

Gm26087 predicted gene, 26087 -1.71 0.267255 NonCoding 

Ly96 lymphocyte antigen 96 -1.71 0.395858 Coding 

Gstm1 
glutathione S-transferase, 

mu 1 
-1.72 0.011717 Coding 

Mmp2 matrix metallopeptidase 2 -1.72 0.014609 Coding 

Gdf6 
growth differentiation factor 

6 
-1.72 0.014916 Coding 

Pgf placental growth factor -1.72 0.017884 Coding 

Usp11 
ubiquitin specific peptidase 

11 
-1.73 0.014599 Complex 

Cp ceruloplasmin -1.73 0.064458 Complex 

Gm24969 predicted gene, 24969 -1.73 0.068663 NonCoding 

Fabp3-ps1 

fatty acid binding protein 3, 

muscle and heart, 

pseudogene 1 

-1.74 0.051895 Pseudogene 

Scarna8 
small Cajal body-specific 

RNA 8 
-1.74 0.314417 NonCoding 

Ifi30 
interferon gamma inducible 

protein 30 
-1.75 0.006665 Coding 

Dusp6 
dual specificity phosphatase 

6 
-1.75 0.049369 Coding 

Cd55 CD55 antigen -1.75 0.133246 Complex 

Gm12245 predicted gene 12245 -1.76 0.024291 Complex 

Ptprb protein tyrosine -1.76 0.029955 Complex 
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phosphatase, receptor type, 

B 

Snord71 
small nucleolar RNA, C/D 

box 71 
-1.76 0.306059 NonCoding 

Tubb4a tubulin, beta 4A class IVA -1.77 0.025826 Coding 

  
-1.77 0.083962 NonCoding 

Tnfsf18 

tumor necrosis factor 

(ligand) superfamily, 

member 18 

-1.77 0.125146 Coding 

Rorb 
RAR-related orphan 

receptor beta 
-1.77 0.176695 Complex 

Cotl1 
coactosin-like 1 

(Dictyostelium) 
-1.78 0.072889 Complex 

Qpct 

glutaminyl-peptide 

cyclotransferase (glutaminyl 

cyclase) 

-1.79 0.016241 Coding 

Gpm6a glycoprotein m6a -1.79 0.020827 Complex 

A630033H20

Rik 

RIKEN cDNA 

A630033H20 gene 
-1.79 0.215518 Coding 

2610528A11R

ik 

RIKEN cDNA 2610528A11 

gene 
-1.80 0.011736 Complex 

Cdo1 
cysteine dioxygenase 1, 

cytosolic 
-1.80 0.020827 Coding 

Scel sciellin -1.80 0.034574 Coding 

Fmod fibromodulin -1.80 0.133696 Coding 

Scarna6 
small Cajal body-specific 

RNA 6 
-1.80 0.390479 NonCoding 

Bex1 brain expressed gene 1 -1.81 0.018459 Complex 

Mgst3 
microsomal glutathione S-

transferase 3 
-1.81 0.029475 Complex 

Dlx2 distal-less homeobox 2 -1.81 0.04662 Complex 

Pgm5 phosphoglucomutase 5 -1.81 0.083962 Complex 

Gm24983 predicted gene, 24983 -1.81 0.106914 NonCoding 

Efemp1 

epidermal growth factor-

containing fibulin-like 

extracellular matrix protein 

1 

-1.82 0.0103 Complex 

Gm21738 predicted gene, 21738 -1.82 0.033199 Coding 

Sulf2 sulfatase 2 -1.82 0.112245 Complex 

Ddit3 
DNA-damage inducible 

transcript 3 
-1.83 0.034853 Coding 

  
-1.83 0.137354 Other 

Crip1 
cysteine-rich protein 1 

(intestinal) 
-1.84 0.041352 Coding 

Sfrp1 
secreted frizzled-related 

protein 1 
-1.84 0.140458 Coding 

Ildr2 

immunoglobulin-like 

domain containing receptor 

2 

-1.85 0.01739 Complex 

Vat1l 

vesicle amine transport 

protein 1 homolog-like (T. 

californica) 

-1.85 0.019083 Complex 

  
-1.85 0.081573 Coding 

Klhl24 kelch-like 24 -1.85 0.095252 Complex 
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H2afv 
H2A histone family, 

member V 
-1.86 0.01056 Coding 

Apela 

apelin receptor early 

endogenous ligand; novel 

gene 

-1.86 0.013723 NonCoding 

Gm22289 predicted gene, 22289 -1.87 0.017021 NonCoding 

Gm11168 predicted gene 11168 -1.87 0.050922 Coding 

Leprel1 leprecan-like 1 -1.88 0.009385 Complex 

Parm1 
prostate androgen-regulated 

mucin-like protein 1 
-1.88 0.013723 Complex 

Serpine2 

serine (or cysteine) 

peptidase inhibitor, clade E, 

member 2 

-1.88 0.024869 Complex 

Nrk Nik related kinase -1.88 0.220637 Complex 

Gm22422 predicted gene, 22422 -1.88 0.34072 NonCoding 

2610318N02R

ik 

RIKEN cDNA 2610318N02 

gene 
-1.89 0.016472 Coding 

Gm11382 predicted pseudogene 11382 -1.89 0.066342 Pseudogene 

Gm25492 predicted gene, 25492 -1.89 0.095333 NonCoding 

Eng endoglin -1.90 0.003921 Complex 

Gm10719 predicted gene 10719 -1.91 0.026432 Coding 

Gm10718 
predicted gene 10718; 

predicted gene 10722 
-1.92 0.036475 Complex 

Dsp desmoplakin -1.93 0.011736 Complex 

Gm25121 predicted gene, 25121 -1.95 0.067782 NonCoding 

Rorb 
RAR-related orphan 

receptor beta 
-1.95 0.162511 Coding 

Chchd10 

coiled-coil-helix-coiled-

coil-helix domain 

containing 10 

-1.96 0.008235 Coding 

Megf10 
multiple EGF-like-domains 

10 
-1.96 0.061275 Complex 

Hmox1 
heme oxygenase (decycling) 

1 
-1.97 0.012221 Complex 

Gas6 growth arrest specific 6 -1.98 0.005385 Coding 

  
-1.98 0.098489 NonCoding 

Gm23145 predicted gene, 23145 -1.99 0.247351 NonCoding 

Tinagl1 
tubulointerstitial nephritis 

antigen-like 1 
-2.00 0.00679 Complex 

Clu clusterin -2.00 0.012632 Complex 

Srpx2 
sushi-repeat-containing 

protein, X-linked 2 
-2.00 0.013723 Complex 

Gm11351 predicted gene 11351 -2.00 0.182704 NonCoding 

Cd34 CD34 antigen -2.01 0.012221 Complex 

Gm10715 predicted gene 10715 -2.01 0.032737 Coding 

Gm17535 predicted gene, 17535 -2.01 0.040503 Coding 

Lce1g late cornified envelope 1G -2.01 0.073604 Coding 

Hspb8 heat shock protein 8 -2.03 0.009357 Complex 

  
-2.03 0.014329 NonCoding 

Jam2 
junction adhesion molecule 

2 
-2.03 0.021149 Complex 

Gm15035 predicted gene 15035 -2.04 0.02583 Complex 

Gm10720 predicted gene 10720 -2.05 0.029437 Coding 
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Gm10717 predicted gene 10717 -2.05 0.060156 Coding 

Cdh19 cadherin 19, type 2 -2.06 0.061704 Coding 

  
-2.07 0.104126 NonCoding 

Gm11274 predicted gene 11274 -2.09 0.012221 NonCoding 

Snord89 
small nucleolar RNA, C/D 

box 89 
-2.09 0.092197 NonCoding 

Gm10721 predicted gene 10721 -2.11 0.031947 Coding 

Gm13086 predicted gene 13086 -2.12 0.014313 Complex 

Ppargc1a 

peroxisome proliferative 

activated receptor, gamma, 

coactivator 1 alpha 

-2.12 0.039398 Complex 

Sorbs2 
sorbin and SH3 domain 

containing 2 
-2.13 0.012221 Complex 

Ptgs1 
prostaglandin-endoperoxide 

synthase 1 
-2.14 0.003508 Complex 

Dlk1 
delta-like 1 homolog 

(Drosophila) 
-2.15 0.012221 Complex 

  
-2.15 0.02583 NonCoding 

  
-2.15 0.041051 NonCoding 

Gm26337 predicted gene, 26337 -2.16 0.160047 NonCoding 

Gm22131 predicted gene, 22131 -2.17 0.029957 NonCoding 

Gm26365 predicted gene, 26365 -2.19 0.01056 NonCoding 

Pdk4 
pyruvate dehydrogenase 

kinase, isoenzyme 4 
-2.19 0.019534 Complex 

Ly6c1 
lymphocyte antigen 6 

complex, locus C1 
-2.21 0.021149 Coding 

Car8 carbonic anhydrase 8 -2.23 0.012163 Complex 

Gm25175 predicted gene, 25175 -2.23 0.155615 NonCoding 

Gm23660 predicted gene, 23660 -2.23 0.16284 NonCoding 

Gm25648 predicted gene, 25648 -2.24 0.090449 NonCoding 

Nqo1 
NAD(P)H dehydrogenase, 

quinone 1 
-2.25 0.006623 Coding 

  
-2.25 0.362625 NonCoding 

Gpx3 glutathione peroxidase 3 -2.26 0.013808 Coding 

Gm24495 predicted gene, 24495 -2.26 0.075069 NonCoding 

Gm26097 predicted gene, 26097 -2.26 0.075781 NonCoding 

Id2 inhibitor of DNA binding 2 -2.28 0.013723 Coding 

Gm10800 predicted gene 10800 -2.28 0.021037 Coding 

Mmp3 matrix metallopeptidase 3 -2.28 0.03816 Coding 

Prl2c3 
prolactin family 2, 

subfamily c, member 3 
-2.32 0.020827 Coding 

Gm23141 predicted gene, 23141 -2.32 0.035659 NonCoding 

Kif1a kinesin family member 1A -2.33 0.003921 Complex 

Stmn2 stathmin-like 2 -2.33 0.006715 Coding 

Serping1 

serine (or cysteine) 

peptidase inhibitor, clade G, 

member 1 

-2.33 0.012221 Complex 

Gm25314 predicted gene, 25314 -2.35 0.168775 NonCoding 

Gm26467 predicted gene, 26467 -2.36 0.038759 NonCoding 

Gm25087 predicted gene, 25087 -2.36 0.038759 NonCoding 

Ly6a 
lymphocyte antigen 6 

complex, locus A 
-2.37 0.012681 Complex 

Gm23254 predicted gene, 23254 -2.37 0.066626 NonCoding 
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Gm25874 predicted gene, 25874 -2.38 0.05356 NonCoding 

Gm25944 predicted gene, 25944 -2.39 0.026432 NonCoding 

Rgs4 
regulator of G-protein 

signaling 4 
-2.4 0.011717 Complex 

Upk1b uroplakin 1B -2.41 0.017945 Coding 

Snord13 
small nucleolar RNA, C/D 

box 13 
-2.45 0.063447 NonCoding 

Gm24088 predicted gene, 24088 -2.51 0.11467 NonCoding 

Gm25120 predicted gene, 25120 -2.51 0.161612 NonCoding 

Aldh1a1 
aldehyde dehydrogenase 

family 1, subfamily A1 
-2.53 0.002912 Coding 

Crip2 cysteine rich protein 2 -2.55 0.009277 Coding 

Serpinb9b 

serine (or cysteine) 

peptidase inhibitor, clade B, 

member 9b 

-2.55 0.019083 Coding 

Snord13 
small nucleolar RNA, C/D 

box 13 
-2.56 0.042888 NonCoding 

Gm24657 predicted gene, 24657 -2.56 0.107696 NonCoding 

Gm23922 predicted gene, 23922 -2.56 0.107696 NonCoding 

Gm22996 predicted gene, 22996 -2.56 0.107696 NonCoding 

Gm24306 predicted gene, 24306 -2.59 0.310309 NonCoding 

Gm24418 predicted gene, 24418 -2.60 0.024972 NonCoding 

Gm24639 predicted gene, 24639 -2.60 0.024972 NonCoding 

Gm23076 predicted gene, 23076 -2.60 0.024972 NonCoding 

Gm25077 predicted gene, 25077 -2.60 0.024972 NonCoding 

Aldh1a7 
aldehyde dehydrogenase 

family 1, subfamily A7 
-2.61 0.012221 Coding 

Ptn pleiotrophin -2.65 0.387046 Complex 

Prl2c2 
prolactin family 2, 

subfamily c, member 2 
-2.71 0.013723 Coding 

Dcn decorin -2.72 0.015141 Complex 

Atoh8 
atonal homolog 8 

(Drosophila) 
-2.73 0.006415 Complex 

Gm25157 predicted gene, 25157 -2.76 0.021149 NonCoding 

Gm22941 predicted gene, 22941 -2.76 0.021149 NonCoding 

Gm22258 predicted gene, 22258 -2.76 0.021149 NonCoding 

Gm21887 predicted gene, 21887 -2.76 0.02513 Coding 

Gm22510 predicted gene, 22510 -2.78 0.067236 NonCoding 

Gm26390 predicted gene, 26390 -2.78 0.067236 NonCoding 

Gm26336 predicted gene, 26336 -2.78 0.067236 NonCoding 

Gm22348 predicted gene, 22348 -2.79 0.085678 NonCoding 

Ly6c2 
lymphocyte antigen 6 

complex, locus C2 
-2.80 0.014609 Coding 

Gm25156 predicted gene, 25156 -2.85 0.040463 NonCoding 

Gm23767 predicted gene, 23767 -2.86 0.022807 NonCoding 

Gm26389 predicted gene, 26389 -2.86 0.029737 NonCoding 

Gm23687 predicted gene, 23687 -2.86 0.029737 NonCoding 

Gm22393 predicted gene, 22393 -2.86 0.029737 NonCoding 

Gm24566 predicted gene, 24566 -2.86 0.029737 NonCoding 

Gm22111 predicted gene, 22111 -2.86 0.029737 NonCoding 

Gm22253 predicted gene, 22253 -2.87 0.013723 NonCoding 

2610507I01Ri

k 

RIKEN cDNA 2610507I01 

gene 
-2.93 0.005374 NonCoding 
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Gm22776 predicted gene, 22776 -2.93 0.014313 NonCoding 

Gm25229 predicted gene, 25229 -2.95 0.02513 NonCoding 

Gpr50 
G-protein-coupled receptor 

50 
-2.96 0.012221 Complex 

Gm22391 predicted gene, 22391 -2.97 0.035107 NonCoding 

Gm24137 predicted gene, 24137 -2.97 0.035107 NonCoding 

Upk3b uroplakin 3B -2.98 0.012221 Complex 

Gm25474 predicted gene, 25474 -2.99 0.012221 NonCoding 

Gm22047 predicted gene, 22047 -2.99 0.012221 NonCoding 

Gm23619 predicted gene, 23619 -2.99 0.012221 NonCoding 

Gm10801 predicted gene 10801 -2.99 0.012221 Complex 

Gm24100 predicted gene, 24100 -3.02 0.036353 NonCoding 

Gm26096 predicted gene, 26096 -3.06 0.006258 NonCoding 

Gm26499 predicted gene, 26499 -3.06 0.006258 NonCoding 

Erdr1 
erythroid differentiation 

regulator 1 
-3.12 0.017945 Complex 

Nrn1 neuritin 1 -3.17 0.002912 Coding 

Gm26200 predicted gene, 26200 -3.17 0.020827 NonCoding 

Gm22851 predicted gene, 22851 -3.21 0.012221 NonCoding 

Akr1c18 
aldo-keto reductase family 

1, member C18 
-3.25 0.012722 Coding 

Gm23953 predicted gene, 23953 -3.25 0.012722 NonCoding 

Gm26332 predicted gene, 26332 -3.25 0.012722 NonCoding 

Gm22863 predicted gene, 22863 -3.25 0.012722 NonCoding 

Gm24618 predicted gene, 24618 -3.25 0.012722 NonCoding 

Fabp7 
fatty acid binding protein 7, 

brain 
-3.26 0.025396 Coding 

Gm25194 predicted gene, 25194 -3.28 0.014916 NonCoding 

Gm26488 predicted gene, 26488 -3.28 0.019098 NonCoding 

Gm24220 predicted gene, 24220 -3.28 0.019098 NonCoding 

Gm25823 predicted gene, 25823 -3.30 0.018845 NonCoding 

Gm25647 predicted gene, 25647 -3.30 0.018845 NonCoding 

Gm25646 predicted gene, 25646 -3.30 0.021016 NonCoding 

Gm25615 predicted gene, 25615 -3.35 0.012221 NonCoding 

Gm24862 predicted gene, 24862 -3.39 0.02513 NonCoding 

Gm23310 predicted gene, 23310 -3.39 0.02513 NonCoding 

Gm25461 predicted gene, 25461 -3.39 0.02513 NonCoding 

Gm15698 

transcription elongation 

factor B (SIII), polypeptide 

2 pseudogene 

-3.42 0.003111 Complex 

Gm25988 predicted gene, 25988 -3.47 0.013723 NonCoding 

Gm25221 predicted gene, 25221 -3.47 0.013723 NonCoding 

Gm23471 predicted gene, 23471 -3.47 0.013723 NonCoding 

Gm23449 predicted gene, 23449 -3.47 0.013723 NonCoding 

Gm25074 predicted gene, 25074 -3.49 0.011736 NonCoding 

Gm24264 predicted gene, 24264 -3.51 0.008675 NonCoding 

Gm25449 predicted gene, 25449 -3.52 0.050422 NonCoding 

Tgfbi 
transforming growth factor, 

beta induced 
-3.62 0.083522 Complex 

Gm22631 predicted gene, 22631 -3.71 0.012221 NonCoding 

Gm22584 predicted gene, 22584 -3.72 0.021149 NonCoding 

Gm22173 predicted gene, 22173 -3.76 0.012221 NonCoding 

Gm24799 predicted gene, 24799 -3.79 0.011736 NonCoding 
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Gm26432 predicted gene, 26432 -3.85 0.02513 NonCoding 

Gm22188 predicted gene, 22188 -3.88 0.0103 NonCoding 

Gm23305 predicted gene, 23305 -3.88 0.027357 NonCoding 

Gm25085 predicted gene, 25085 -3.88 0.027357 NonCoding 

Gm26502 predicted gene, 26502 -4.18 0.012221 NonCoding 

Gm23313 predicted gene, 23313 -4.18 0.012221 NonCoding 

Gm23446 predicted gene, 23446 -4.18 0.012221 NonCoding 

Gm23862 predicted gene, 23862 -4.21 0.013723 NonCoding 

Gm22255 predicted gene, 22255 -4.23 0.024669 NonCoding 

Gm24926 predicted gene, 24926 -4.24 0.021149 NonCoding 

Gm22632 predicted gene, 22632 -4.24 0.021149 NonCoding 

Gm26366 predicted gene, 26366 -4.27 0.022291 NonCoding 

Gm23089 predicted gene, 23089 -4.29 0.014078 NonCoding 

Gm24711 predicted gene, 24711 -4.29 0.014078 NonCoding 

Gm26188 predicted gene, 26188 -4.29 0.014078 NonCoding 

Gm25089 predicted gene, 25089 -4.30 0.029216 NonCoding 

Gm26283 predicted gene, 26283 -4.47 0.02513 NonCoding 

Gm23682 predicted gene, 23682 -4.47 0.02513 NonCoding 

Gm24654 predicted gene, 24654 -4.47 0.02513 NonCoding 

Gm25585 predicted gene, 25585 -4.47 0.02513 NonCoding 

Gm25840 predicted gene, 25840 -4.47 0.02513 NonCoding 

Gm24040 predicted gene, 24040 -4.47 0.02513 NonCoding 

Gm22050 predicted gene, 22050 -4.47 0.02513 NonCoding 

Gm23286 predicted gene, 23286 -4.47 0.02513 NonCoding 

Gm24021 predicted gene, 24021 -4.47 0.02513 NonCoding 

Gm22274 predicted gene, 22274 -4.47 0.02513 NonCoding 

Gm24652 predicted gene, 24652 -4.47 0.02513 NonCoding 

Gm23618 predicted gene, 23618 -4.47 0.02513 NonCoding 

Gm23688 predicted gene, 23688 -4.47 0.02513 NonCoding 

Gm24570 predicted gene, 24570 -4.47 0.02513 NonCoding 

Gm22640 predicted gene, 22640 -4.47 0.02513 NonCoding 

Gm24952 predicted gene, 24952 -4.47 0.02513 NonCoding 

Gm23944 predicted gene, 23944 -4.47 0.02513 NonCoding 

Gm22629 predicted gene, 22629 -4.47 0.02513 NonCoding 

Gm26374 predicted gene, 26374 -4.47 0.02513 NonCoding 

Gm26284 predicted gene, 26284 -4.47 0.02513 NonCoding 

Gm25452 predicted gene, 25452 -4.47 0.02513 NonCoding 

Gm25984 predicted gene, 25984 -4.47 0.02513 NonCoding 

Gm25017 predicted gene, 25017 -4.47 0.02513 NonCoding 

Gm22834 predicted gene, 22834 -4.57 0.024869 NonCoding 

Gm24866 predicted gene, 24866 -4.59 0.021149 NonCoding 

Gm25463 predicted gene, 25463 -4.59 0.021149 NonCoding 

Gm24528 predicted gene, 24528 -4.59 0.021149 NonCoding 

Gm23356 predicted gene, 23356 -4.59 0.021149 NonCoding 

Gm24872 predicted gene, 24872 -4.59 0.021149 NonCoding 

Gm24027 predicted gene, 24027 -4.59 0.021149 NonCoding 

Gm22524 predicted gene, 22524 -4.59 0.021149 NonCoding 

Gm22630 predicted gene, 22630 -4.59 0.021149 NonCoding 

Gm25741 predicted gene, 25741 -4.59 0.021149 NonCoding 

Gm26059 predicted gene, 26059 -4.59 0.021149 NonCoding 

Gm22511 predicted gene, 22511 -4.59 0.021149 NonCoding 

Gm25098 predicted gene, 25098 -4.59 0.021149 NonCoding 

Gm24702 predicted gene, 24702 -4.59 0.021149 NonCoding 
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Gm25462 predicted gene, 25462 -4.59 0.021149 NonCoding 

Gm25523 predicted gene, 25523 -4.59 0.021149 NonCoding 

Gm22909 predicted gene, 22909 -4.59 0.021149 NonCoding 

Gm26392 predicted gene, 26392 -4.59 0.021149 NonCoding 

Gm24219 predicted gene, 24219 -4.59 0.021149 NonCoding 

Gm25230 predicted gene, 25230 -4.59 0.021149 NonCoding 

Gm22627 predicted gene, 22627 -4.59 0.021149 NonCoding 

Gm24585 predicted gene, 24585 -4.59 0.021149 NonCoding 

Gm24206 predicted gene, 24206 -4.59 0.021149 NonCoding 

Gm25209 predicted gene, 25209 -4.59 0.021149 NonCoding 

Gm26334 predicted gene, 26334 -4.59 0.021149 NonCoding 

Gm25742 predicted gene, 25742 -4.59 0.021149 NonCoding 

Gm25146 predicted gene, 25146 -4.59 0.021149 NonCoding 

Gm24759 predicted gene, 24759 -4.59 0.021149 NonCoding 

Gm23575 predicted gene, 23575 -4.59 0.021149 NonCoding 

Gm22449 predicted gene, 22449 -4.59 0.021149 NonCoding 

Gm22912 predicted gene, 22912 -4.59 0.021149 NonCoding 

Gm25710 predicted gene, 25710 -4.59 0.021149 NonCoding 

Gm26434 predicted gene, 26434 -4.59 0.021149 NonCoding 

Gm23560 predicted gene, 23560 -4.59 0.021149 NonCoding 

Gm22252 predicted gene, 22252 -4.72 0.017861 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 
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Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-4.79 0.012221 NonCoding 

Gm26032 predicted gene, 26032 -4.84 0.012221 NonCoding 

Gm22046 predicted gene, 22046 -4.84 0.012221 NonCoding 

Gm25471 predicted gene, 25471 -4.84 0.012221 NonCoding 

Gm25210 predicted gene, 25210 -4.84 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-5.04 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-5.04 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-5.04 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-5.04 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-5.04 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-5.04 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-5.04 0.012221 NonCoding 

Snord116l1 
small nucleolar RNA, C/D 

box 116-like 1 
-5.04 0.012221 NonCoding 

Snord116 
small nucleolar RNA, C/D 

box 116 
-5.04 0.012221 NonCoding 

Snord116l2 
small nucleolar RNA, C/D 

box 116-like 2 
-5.04 0.012221 NonCoding 

Snord116l1 
small nucleolar RNA, C/D 

box 116-like 1 
-5.04 0.012221 NonCoding 

Klhl2 kelch-like 2, Mayven -13.68 0.002912 Complex 
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GENES WITH DIFFERENTIAL EXPRESSION IN THE ABSENCE OF RAD51D 

IDENTIFIED BY RNA SEQ 

 

  



www.manaraa.com

201 

Table B.1. Genes identified by RNA Seq with differential expression between Rad51d-

proficient and Rad51d-deficient primary mouse embryonic fibroblast cell lines. Genes are 

listed in order of increasing fold change.   

 

Gene 

Fold Change 

(Rad51d-proficient v. Rad51d-

deficient) 

q value 

Cd52 -11.56 1.51E-03 

Ibsp -10.88 1.51E-03 

Bcl2a1b -10.59 1.51E-03 

Ncf4 -9.54 1.51E-03 

Clec12a -9.21 1.51E-03 

Bcl2a1d -9.18 1.51E-03 

Cd48 -9.03 1.51E-03 

Sash3 -8.88 1.51E-03 

Rgs1 -8.84 1.51E-03 

Hcst -8.67 5.04E-03 

Stap1 -8.45 1.51E-03 

C1qa -5.39 1.51E-03 

Vav1 -5.38 2.72E-03 

Spi1 -4.91 1.42E-02 

Cyth4 -4.9 1.51E-03 

Adgre1 -4.88 1.51E-03 

Laptm5 -4.88 1.51E-03 

Trem2 -4.87 1.51E-03 

Dock2 -4.87 2.72E-03 

C1qc -4.86 1.51E-03 

Cd36 -4.85 1.51E-03 

C1qb -4.84 1.51E-03 

Hk3 -4.84 2.72E-03 

Myo1f -4.83 1.51E-03 

Itgam -4.76 1.51E-03 

Rpl39l -4.75 1.51E-03 

C5ar1 -4.75 1.51E-03 

Wdfy4 -4.74 1.51E-03 

Ms4a6d -4.74 3.95E-02 

Fcrls -4.73 1.51E-03 

Lair1 -4.71 1.51E-03 

Tyrobp -4.69 1.51E-03 

Lilrb4a -4.64 2.72E-03 

Ctss -4.63 1.51E-03 

Pld4 -4.61 3.86E-03 

Fcer1g -4.59 1.51E-03 

Inpp5d -4.58 1.51E-03 

Fyb -4.50 2.72E-03 

Col2a1 -4.41 1.51E-03 

Tlr13 -4.39 1.51E-03 

P2ry6 -4.38 3.65E-02 

Ncf1 -4.35 1.51E-03 

Cd37 -4.32 3.20E-02 
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Lyz2 -4.31 1.51E-03 

Mpeg1 -4.31 1.51E-03 

Cd84 -4.26 3.86E-03 

Clec4d -4.22 1.51E-03 

Adam8 -4.20 1.51E-03 

Itgal -4.17 1.51E-03 

Msr1 -4.14 1.51E-03 

Arhgap25 -4.07 1.51E-03 

Ms4a6c -4.07 4.08E-02 

Myo1g -4.05 1.42E-02 

Fcgr3 -3.97 1.51E-03 

Cybb -3.96 1.51E-03 

Nfam1 -3.96 2.72E-03 

Lcp1 -3.89 9.82E-03 

Parvg -3.89 4.16E-02 

Ms4a7 -3.75 1.51E-03 

Arhgap4 -3.69 3.86E-03 

Ptprc -3.61 3.86E-03 

Csf1r -3.6 1.51E-03 

Pik3ap1 -3.54 1.51E-03 

Mmp12 -3.49 1.51E-03 

Tph1 -3.43 1.51E-03 

Arhgap30 -3.41 2.72E-03 

C3ar1 -3.36 1.51E-03 

Cd53 -3.22 1.51E-03 

Tlr7 -3.22 2.72E-03 

Was -3.17 2.16E-02 

Dpep2 -3.11 1.16E-02 

Rad51d -3.08 1.51E-03 

Cd300lb -3.08 1.51E-03 

Mrc1 -2.89 1.51E-03 

Lmo2 -2.82 1.33E-02 

Alox5ap -2.81 1.51E-03 

Irf8 -2.81 1.51E-03 

Fermt3 -2.8 1.51E-03 

Zic4 -2.76 1.51E-03 

Slc7a8 -2.75 1.51E-03 

Nckap1l -2.73 1.51E-03 

Slc11a1 -2.59 1.51E-03 

Ccl9 -2.55 1.51E-03 

Ngfr -2.54 1.51E-03 

AI467606 -2.51 2.65E-02 

Plac8 -2.48 1.51E-03 

Ccl6 -2.48 2.78E-02 

Dok2 -2.46 1.51E-03 

Cd68 -2.41 1.51E-03 

Hoxc8 -2.38 1.51E-03 

Klhl6 -2.38 3.17E-02 

Hmx1 -2.34 1.51E-03 

Cdh23 -2.34 2.52E-02 

Slamf9 -2.32 2.44E-02 

Selplg -2.26 1.16E-02 

Gpr149 -2.25 1.51E-03 
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Ly9 -2.24 3.46E-02 

Slfn2 -2.21 1.51E-03 

Ptpn6 -2.19 1.51E-03 

Plek -2.16 1.51E-03 

Hoxc12 -2.12 1.51E-03 

Slc37a2 -2.12 1.51E-03 

Hoxb6 -2.09 1.51E-03 

Arl11 -2.09 1.51E-03 

Tbx4 -2.08 1.51E-03 

Tbxas1 -2.08 1.51E-03 

Nrros -2.07 1.51E-03 

Zic1 -2.04 1.51E-03 

Pycard -2.04 7.00E-03 

Tnmd -2.02 1.51E-03 

Hoxb8 -2.01 1.51E-03 

Map3k7cl -2.01 1.51E-03 

Slfn8,Slfn9 -1.96 1.51E-03 

Ush1g -1.96 1.51E-03 

Hoxb7 -1.94 1.51E-03 

Hoxc9 -1.94 1.51E-03 

Hoxc5 -1.94 1.51E-03 

Ptpn18 -1.93 5.04E-03 

Adh1 -1.93 3.20E-02 

Smoc1 -1.91 1.51E-03 

Ankrd1 -1.90 1.51E-03 

Cfp -1.87 1.51E-03 

Hoxa3,Hoxa4,Hoxa5,Hoxa6 -1.85 1.51E-03 

Hoxb2 -1.84 1.51E-03 

Fmnl1 -1.84 1.51E-03 

Ripk4 -1.84 1.51E-03 

Apobec1 -1.83 1.51E-03 

Hoxb3 -1.82 1.51E-03 

Selp -1.82 1.48E-02 

Itgb2 -1.80 1.51E-03 

Npy -1.80 1.51E-03 

C1qtnf3 -1.79 1.51E-03 

Lor -1.79 6.03E-03 

Lpxn -1.74 1.51E-03 

Foxc2 -1.74 1.51E-03 

Tfpi -1.72 1.51E-03 

Krt20 -1.71 1.51E-03 

Gja3 -1.71 2.65E-02 

Coro1a -1.70 1.51E-03 

Cd300a -1.68 1.51E-03 

Atp1a3 -1.68 1.51E-03 

Alpl -1.67 1.51E-03 

Nsg2 -1.67 2.44E-02 

Clca3a1 -1.66 1.51E-03 

Dusp5 -1.64 1.51E-03 

Trf -1.64 1.51E-03 

Adgrg5 -1.63 4.55E-02 

Hoxc4 -1.62 1.51E-03 

Huwe1,Mir3113 -1.62 1.51E-03 
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Neurl3 -1.62 2.72E-03 

Slc1a6 -1.57 1.51E-03 

Shtn1 -1.54 1.51E-03 

Cd93 -1.54 1.51E-03 

Ncf2 -1.53 1.51E-03 

Sema4d -1.53 1.51E-03 

Lad1 -1.53 2.31E-02 

Cfh -1.52 2.72E-03 

Ptpre -1.51 1.51E-03 

Krt7 -1.50 1.51E-03 

Hoxb4 -1.49 1.51E-03 

Hoxc6 -1.48 1.51E-03 

Rbm20 -1.47 1.51E-03 

Psd4 -1.46 1.51E-03 

Tmem132e -1.45 1.51E-03 

Tll1 -1.43 1.51E-03 

Grem2 -1.42 1.51E-03 

Grap -1.42 3.77E-02 

Foxd1 -1.40 1.51E-03 

Foxl1 -1.39 1.51E-03 

Des -1.38 1.51E-03 

Egr2 -1.37 1.51E-03 

Parvb -1.37 1.51E-03 

Ret -1.36 1.51E-03 

Clca3a2 -1.36 1.16E-02 

Hoxb5 -1.35 3.90E-02 

Meg3,Mir1906-1,Mir770 -1.33 1.51E-03 

Cspg4 -1.33 1.51E-03 

Ucp2 -1.31 1.51E-03 

Ulbp1 -1.30 1.51E-03 

Ankk1 -1.30 2.72E-03 

Sp100 -1.30 4.79E-02 

Irx1 -1.28 1.51E-03 

Ifi27l2b -1.28 7.00E-03 

Fat3 -1.27 1.51E-03 

Slfn3 -1.27 1.80E-02 

Dmrta2 -1.26 1.51E-03 

Hoxd4 -1.26 1.87E-02 

Unc5b -1.25 1.51E-03 

Skap1 -1.25 1.51E-03 

Irf5 -1.25 1.51E-03 

Hecw1 -1.24 1.51E-03 

Col11a2 -1.24 2.72E-03 

Chst2 -1.23 1.51E-03 

Amer2 -1.23 2.92E-02 

Lrtm2 -1.23 3.60E-02 

Sox13 -1.22 1.51E-03 

Smim10l2a -1.21 2.52E-02 

Ctsh -1.19 1.51E-03 

Sorbs1 -1.18 1.51E-03 

Glce,Mir5133 -1.18 1.51E-03 

Gpsm3 -1.18 2.72E-03 

Slc43a2 -1.17 1.51E-03 
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Jph2 -1.17 1.51E-03 

Cacna1h -1.16 1.51E-03 

Kctd8 -1.16 1.55E-02 

Ugt1a1,Ugt1a10,Ugt1a2,Ugt1a5,U

gt1a6a,Ugt1a6b,Ugt1a7c,Ugt1a9 
-1.16 1.87E-02 

Glipr1 -1.16 4.68E-02 

Lims2 -1.15 1.51E-03 

Il2rg -1.15 7.00E-03 

Coch -1.14 1.51E-03 

Serpine1 -1.14 1.51E-03 

Podnl1 -1.14 1.51E-03 

Pparg -1.13 2.72E-03 

Wnt2b -1.12 1.51E-03 

Rap1gap2 -1.10 1.51E-03 

Foxs1 -1.09 1.51E-03 

Abcc3 -1.09 2.72E-03 

Nipal4 -1.08 1.51E-03 

Egr1 -1.08 1.51E-03 

Galnt18 -1.08 1.51E-03 

Asb5 -1.08 7.91E-03 

Tmem106a -1.06 1.51E-03 

Atoh8 -1.06 1.51E-03 

Cxcr4 -1.06 6.03E-03 

Adap1 -1.06 2.97E-02 

Bcar3 -1.05 1.51E-03 

Nrgn -1.05 3.65E-02 

Rasgrp3 -1.04 1.51E-03 

Irx2 -1.03 1.51E-03 

Hoxc10 -1.03 1.51E-03 

Itpripl2 -1.03 1.51E-03 

Rbm24 -1.02 1.73E-02 

Ctgf -1.01 1.51E-03 

Zic2 -1.01 1.51E-03 

Cd14 -1.01 1.51E-03 

Scand1 -1.01 1.51E-03 

Fgd3 -1.00 1.51E-03 

Ereg -1.00 7.00E-03 

Klf5 -0.99 1.51E-03 

Actg2 -0.99 1.51E-03 

Satb1 -0.99 3.86E-03 

Lat2 -0.99 1.24E-02 

Pgf -0.97 1.51E-03 

Anpep -0.96 1.51E-03 

Dner -0.96 1.08E-02 

Fmn2 -0.95 1.51E-03 

Tnfrsf11b -0.95 1.51E-03 

Adra2a -0.95 1.51E-03 

Hspb1 -0.95 1.51E-03 

Epas1 -0.95 2.72E-03 

Foxp2 -0.95 3.86E-03 

En1 -0.94 1.51E-03 

Exd2 -0.94 1.51E-03 

Spry2 -0.94 1.51E-03 
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Phlda1 -0.93 1.51E-03 

Msx2 -0.93 1.51E-03 

Id1 -0.93 1.51E-03 

Lfng -0.92 1.51E-03 

Dock8 -0.91 1.51E-03 

Csrnp1 -0.91 1.51E-03 

Socs2 -0.91 2.72E-03 

Fbxo27 -0.91 2.24E-02 

Krt19 -0.90 1.51E-03 

Ltbp2 -0.90 1.51E-03 

Ch25h -0.90 1.51E-03 

Rasgef1b -0.90 2.72E-03 

Myom1 -0.90 7.91E-03 

AI661453 -0.90 3.20E-02 

Csf1 -0.89 1.51E-03 

Sntg1 -0.89 4.85E-02 

Nog -0.88 1.51E-03 

Lrp2 -0.88 1.51E-03 

Lyn -0.88 1.51E-03 

Mgll -0.88 1.51E-03 

Junb -0.88 1.51E-03 

Tmem238 -0.88 2.72E-03 

Chsy3 -0.88 3.90E-02 

Mmp17 -0.87 1.51E-03 

Mcam -0.87 1.51E-03 

Ccdc68 -0.87 1.42E-02 

Igsf9 -0.86 1.51E-03 

S100a7a -0.86 1.51E-03 

Adcyap1r1 -0.86 1.51E-03 

Thsd1 -0.86 8.90E-03 

Rassf6 -0.86 1.48E-02 

Epha4 -0.85 1.51E-03 

Gas7 -0.85 1.51E-03 

Cblb -0.85 1.51E-03 

Hoxa7,Mira -0.85 1.51E-03 

Rgs10 -0.85 7.91E-03 

Ebf2 -0.85 1.48E-02 

Rnaset2b -0.85 3.03E-02 

Siglecg -0.84 1.51E-03 

Mogat2 -0.84 1.51E-03 

Zdbf2 -0.84 3.86E-03 

Tnik -0.84 6.03E-03 

Smad9 -0.84 7.91E-03 

Cited2 -0.83 1.51E-03 

Klf2 -0.83 1.51E-03 

Hlx -0.83 2.72E-03 

Slc35f1 -0.83 1.64E-02 

Runx1 -0.82 1.51E-03 

Plaur -0.82 1.51E-03 

Apoe -0.82 1.51E-03 

Fhl1 -0.82 1.51E-03 

Lpl -0.82 2.72E-03 

Hck -0.82 5.04E-03 
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Insl3,Jak3 -0.82 3.95E-02 

Lmod1 -0.81 1.51E-03 

Rgs16 -0.81 1.51E-03 

Adam19 -0.81 1.51E-03 

Itprip -0.81 1.51E-03 

Kdr -0.81 1.51E-03 

Flt1 -0.81 1.51E-03 

Fbln2 -0.81 1.51E-03 

Zfp771 -0.81 1.51E-03 

Bmpr1b -0.81 2.72E-03 

Pax1 -0.81 1.55E-02 

Kcnab1 -0.80 1.51E-03 

Nipal1 -0.80 1.51E-03 

Relt -0.80 1.51E-03 

Phlpp1 -0.79 1.51E-03 

Fam20c -0.79 1.51E-03 

Gcnt4 -0.79 5.04E-03 

Pcdh10 -0.78 1.51E-03 

Ptprd -0.78 2.72E-03 

Ntn4 -0.78 3.86E-03 

Tmcc3 -0.77 1.51E-03 

Cotl1 -0.77 1.51E-03 

Acan -0.77 1.16E-02 

C77370 -0.77 3.26E-02 

Lrrc4c -0.77 4.68E-02 

Kctd11,Tmem95 -0.76 1.51E-03 

Syk -0.76 1.51E-03 

Prodh -0.76 1.24E-02 

Stard8 -0.76 3.33E-02 

Zfp703 -0.75 1.51E-03 

Dlc1 -0.75 1.51E-03 

Cdh10 -0.75 3.86E-03 

Fosb -0.75 6.03E-03 

Slitrk5 -0.75 1.16E-02 

Synpo2 -0.75 2.10E-02 

Eya2 -0.75 4.41E-02 

Fes -0.74 9.82E-03 

Tusc1 -0.74 1.48E-02 

Zdhhc14 -0.74 3.03E-02 

Twist2 -0.73 1.51E-03 

Mboat2 -0.73 1.51E-03 

Gadd45g -0.73 1.51E-03 

Cdk18 -0.73 7.00E-03 

Sepp1 -0.73 8.90E-03 

Fam84b -0.73 2.85E-02 

Ier5 -0.72 1.51E-03 

Akap12 -0.72 1.51E-03 

Arhgdib -0.72 1.51E-03 

Fgf13 -0.72 6.03E-03 

Rtn4r -0.72 2.16E-02 

Cck -0.72 2.24E-02 

Brinp1 -0.72 2.72E-02 

Arhgef28 -0.71 1.51E-03 
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Efnb1 -0.71 1.51E-03 

Tsc22d2 -0.71 2.72E-03 

Ptprz1 -0.71 8.90E-03 

Slc6a17 -0.71 1.87E-02 

Jag1 -0.70 6.03E-03 

Vsig10l -0.70 1.08E-02 

Erc2 -0.70 2.92E-02 

Dusp6 -0.69 1.51E-03 

Mesdc1 -0.69 1.51E-03 

Ngf -0.69 3.86E-03 

Acta2 -0.69 1.64E-02 

Adamts14 -0.69 1.95E-02 

Popdc2 -0.69 3.20E-02 

Cyr61 -0.68 1.51E-03 

Tm4sf1 -0.68 2.72E-03 

Bcar1 -0.68 2.72E-03 

Cpeb2 -0.68 7.00E-03 

Il11 -0.68 2.78E-02 

Epha2 -0.67 1.51E-03 

Mical2 -0.67 1.51E-03 

Ptk2b -0.67 7.91E-03 

Nptx2 -0.67 8.90E-03 

Lpin3 -0.67 2.58E-02 

Runx3 -0.67 3.03E-02 

Chst7 -0.66 1.95E-02 

Lhx9 -0.66 3.60E-02 

Spata5l1 -0.66 3.77E-02 

Cebpa -0.66 3.90E-02 

Smpdl3a -0.66 4.41E-02 

Flt4 -0.65 5.04E-03 

Pdlim5 -0.65 1.16E-02 

Arl4c -0.65 1.48E-02 

Plk2 -0.64 2.72E-03 

Errfi1 -0.64 3.86E-03 

Smad7 -0.64 5.04E-03 

Smtn -0.64 7.91E-03 

Fbxl7 -0.64 1.24E-02 

H2afj -0.64 1.80E-02 

Unc93b1 -0.64 2.72E-02 

Mafb -0.64 3.84E-02 

Pla2g7 -0.64 3.90E-02 

Amotl2 -0.63 7.91E-03 

Sacs -0.63 1.08E-02 

Fgfr2 -0.63 1.08E-02 

Ptgis -0.63 1.16E-02 

Gata6 -0.63 1.80E-02 

Tbcc -0.63 1.87E-02 

Tgfb1i1 -0.62 3.86E-03 

Plekhg3 -0.62 6.03E-03 

Sdpr -0.62 8.90E-03 

Sirpa -0.62 1.24E-02 

Nnat -0.62 1.48E-02 

Tshz2 -0.62 3.46E-02 
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Klf6 -0.61 7.00E-03 

Ptgs2 -0.61 7.91E-03 

Crlf1 -0.61 9.82E-03 

Plk3 -0.61 1.08E-02 

Slc9a3r1 -0.61 1.24E-02 

Adm -0.61 1.24E-02 

Bok -0.61 1.33E-02 

Rasa4 -0.61 1.33E-02 

Tagln2 -0.61 1.80E-02 

Tep1 -0.61 2.38E-02 

Nppb -0.61 3.40E-02 

Pik3cd -0.61 4.79E-02 

Srf -0.60 8.90E-03 

Etv6 -0.60 9.82E-03 

Fat1 -0.60 1.24E-02 

Kalrn -0.60 2.02E-02 

Pim3 -0.60 2.16E-02 

Trpv2 -0.60 3.20E-02 

Ube2ql1 -0.60 4.22E-02 

Anxa1 -0.59 1.80E-02 

Flnb -0.59 1.95E-02 

Tpgs1 -0.59 2.31E-02 

Sema7a -0.59 4.22E-02 

Foxp4 -0.58 1.42E-02 

Rnf217 -0.58 1.87E-02 

Nr2f6 -0.58 1.95E-02 

Lama5 -0.58 2.16E-02 

Zfp414 -0.58 2.97E-02 

Igf1r -0.57 1.42E-02 

Bdnf -0.57 1.55E-02 

Sash1 -0.57 2.24E-02 

Picalm -0.57 2.31E-02 

Plekha2 -0.57 2.52E-02 

Il4ra -0.57 2.58E-02 

Ltbp4 -0.57 2.92E-02 

Htr1b -0.57 3.10E-02 

Cds1 -0.57 3.72E-02 

Map3k6 -0.57 4.75E-02 

Nr4a1 -0.56 1.73E-02 

Myh11 -0.56 1.95E-02 

Sema3a -0.56 2.16E-02 

Unc5c -0.56 2.31E-02 

Ier5l -0.56 3.17E-02 

Lpp -0.55 1.87E-02 

Hbegf -0.55 1.87E-02 

Hic1 -0.55 2.02E-02 

Slc16a3 -0.55 2.58E-02 

Mapkapk3 -0.54 2.92E-02 

Rnf19b -0.54 2.97E-02 

Specc1 -0.54 3.17E-02 

Jund -0.53 2.52E-02 

Enc1 -0.53 2.58E-02 

Itga5 -0.53 2.97E-02 



www.manaraa.com

210 

Pdlim1 -0.53 2.97E-02 

Rusc2 -0.53 2.97E-02 

Cyba -0.53 3.20E-02 

Metrnl -0.53 3.40E-02 

Tgfb1 -0.53 3.54E-02 

Fermt2 -0.52 3.26E-02 

Tnk2 -0.52 3.33E-02 

Sertad1 -0.52 3.77E-02 

Scarf2 -0.52 3.84E-02 

Adam9 -0.51 3.10E-02 

Rhob -0.51 3.77E-02 

Arhgap31 -0.51 4.62E-02 

Cdh2 -0.50 4.79E-02 

Prrx1 0.49 4.79E-02 

Postn 0.50 4.08E-02 

Mt1 0.50 4.79E-02 

Lss 0.52 3.40E-02 

Il1rl1 0.52 3.65E-02 

Dpp7 0.52 4.02E-02 

Pmp22 0.53 3.20E-02 

Cd276 0.53 3.60E-02 

Tmem176b 0.53 3.95E-02 

Pck2 0.54 3.20E-02 

Mgst3 0.54 3.46E-02 

Hmgcr 0.55 1.95E-02 

Emilin1 0.55 2.10E-02 

Srxn1 0.55 2.38E-02 

Cav2 0.55 2.44E-02 

Acat2 0.55 2.72E-02 

Mdk 0.55 3.03E-02 

Cdh13 0.55 4.22E-02 

Fdps 0.56 1.48E-02 

Akr1b3 0.56 1.80E-02 

Sorcs2 0.56 2.52E-02 

Acsl3,Utp14b 0.56 3.03E-02 

Timp3 0.57 7.91E-03 

Cd9 0.57 1.24E-02 

Mvd 0.57 1.55E-02 

Scd1 0.57 1.95E-02 

Gorab 0.57 3.60E-02 

Fkbp14 0.57 4.85E-02 

Dkk2 0.58 2.97E-02 

Crip2 0.58 3.17E-02 

Cbr3 0.58 3.20E-02 

Gsdmd 0.58 4.68E-02 

Rab3d 0.58 4.97E-02 

Cd248 0.59 1.24E-02 

Htra1 0.59 1.24E-02 

Col6a1 0.59 1.33E-02 

Isyna1 0.59 1.48E-02 

Acot13 0.59 1.87E-02 

Arhgap28 0.59 2.31E-02 

Fam213a 0.59 2.44E-02 
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Sema5a 0.59 2.92E-02 

Pdpn 0.60 9.82E-03 

Cxcl14 0.60 2.10E-02 

Gpt2 0.60 2.10E-02 

Ccl7 0.60 3.20E-02 

Col6a2 0.61 6.03E-03 

Myo1d 0.61 9.82E-03 

Ogdhl 0.61 1.33E-02 

Col1a2 0.61 1.42E-02 

Usp18 0.61 2.02E-02 

Ddit4 0.61 2.85E-02 

Tmem176a 0.61 3.65E-02 

Fmnl2 0.62 8.90E-03 

Adora2b 0.62 3.10E-02 

F2rl1 0.63 7.00E-03 

Kif5c 0.63 9.82E-03 

Rragd 0.63 1.08E-02 

Atp9a 0.63 1.33E-02 

Gdf11 0.63 1.95E-02 

Gem 0.63 2.16E-02 

Cd82 0.63 2.78E-02 

Msmo1 0.64 1.51E-03 

Add3 0.64 1.24E-02 

Lhx6 0.64 2.31E-02 

Tmem45a 0.64 2.38E-02 

Cend1 0.64 2.65E-02 

Sbsn 0.64 4.41E-02 

Dnmt3a 0.65 1.51E-03 

Nedd9 0.65 6.03E-03 

Gpc3 0.65 7.00E-03 

Itgb5 0.65 8.90E-03 

Mgat3 0.65 1.42E-02 

Ica1 0.65 1.42E-02 

Ndrg2 0.65 1.55E-02 

Gstt3 0.65 3.46E-02 

Oaf 0.66 2.72E-03 

Fam129a 0.66 5.04E-03 

Lamc2 0.66 1.55E-02 

Nsg1 0.66 1.64E-02 

Sesn1 0.66 1.73E-02 

Tob1 0.66 2.44E-02 

Oplah 0.66 3.33E-02 

Sat1 0.67 2.72E-03 

Pde4b 0.67 6.03E-03 

Xaf1 0.67 7.00E-03 

Irx3 0.67 7.91E-03 

Casp12 0.67 2.78E-02 

Idh1 0.68 2.72E-03 

Mir5114,Scd2 0.68 2.72E-03 

Hspb8 0.68 2.72E-03 

Prrg3 0.68 1.33E-02 

Dhrs3 0.68 2.16E-02 

Sim2 0.68 3.20E-02 
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Ubc 0.68 3.65E-02 

Slc13a5 0.68 4.97E-02 

Isg15 0.69 3.86E-03 

Il17rd 0.69 6.03E-03 

Dixdc1 0.69 3.20E-02 

Adgrb2 0.69 4.92E-02 

Cthrc1 0.70 1.51E-03 

Igsf10 0.70 7.00E-03 

Slc30a4 0.71 1.51E-03 

Tubb3 0.71 1.51E-03 

Tns2 0.71 2.72E-03 

Nsdhl 0.71 2.72E-03 

Fkbp7 0.71 1.08E-02 

Nfkbie 0.71 1.33E-02 

Itgb3 0.71 1.48E-02 

Bdh2 0.71 3.65E-02 

Net1 0.72 1.51E-03 

Cdkn2b 0.72 1.51E-03 

Insig1 0.72 1.51E-03 

Ntn1 0.72 3.86E-03 

Nnt 0.73 1.51E-03 

Pdlim2 0.73 1.51E-03 

Ephb3 0.73 1.51E-03 

Crip1 0.73 6.03E-03 

Slc2a6 0.73 1.80E-02 

Sesn3 0.73 2.78E-02 

Mfap4 0.74 1.51E-03 

Rhoj 0.74 1.51E-03 

Osmr 0.74 1.51E-03 

Tnn 0.74 3.86E-03 

Clmp 0.74 3.86E-03 

Apol9a 0.74 1.16E-02 

Sfrp1 0.75 1.51E-03 

Itm2a 0.75 1.51E-03 

Adamts2 0.75 2.72E-03 

Ptprb 0.75 6.03E-03 

Sorbs2 0.75 1.16E-02 

Cth 0.75 1.87E-02 

Wnt10b 0.75 2.44E-02 

Alx1 0.75 3.77E-02 

Mylip 0.75 4.02E-02 

Sqrdl 0.76 1.51E-03 

Fgf10 0.76 5.04E-03 

Arhgef3 0.76 7.00E-03 

Gadd45a 0.76 7.00E-03 

Mtus2 0.76 7.91E-03 

Crem 0.76 9.82E-03 

Hsd17b7 0.77 1.51E-03 

Abca1 0.77 1.51E-03 

Cxcl10 0.77 1.51E-03 

Il18rap 0.77 5.04E-03 

Lrrn4cl 0.77 1.33E-02 

Usp2 0.77 2.58E-02 
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Acsl6 0.77 2.85E-02 

Adcy5 0.77 3.03E-02 

Stat2 0.78 1.51E-03 

Igfbp6 0.78 1.51E-03 

Lrrc15 0.78 1.51E-03 

Sulf2 0.78 1.51E-03 

Il13ra1 0.78 1.51E-03 

Cdo1 0.78 2.72E-03 

Ifit3 0.78 7.91E-03 

Ntf3 0.78 1.64E-02 

Hist1h2ac 0.78 1.73E-02 

Gchfr 0.78 4.41E-02 

Gxylt2 0.79 1.51E-03 

Cdon 0.79 1.51E-03 

Ephb6 0.79 8.90E-03 

Gbp3 0.79 2.97E-02 

Cdkn2a 0.80 1.51E-03 

Ppfibp2 0.80 1.51E-03 

Mmp2 0.80 1.51E-03 

Rftn2 0.80 7.00E-03 

Rgs17 0.81 1.51E-03 

Cyp51 0.81 1.51E-03 

Slc16a2 0.81 1.51E-03 

Hhip 0.81 2.72E-03 

Arhgap6 0.81 5.04E-03 

Scn1b 0.81 7.00E-03 

Lifr 0.81 3.72E-02 

Dhcr24 0.82 1.51E-03 

Srpx2 0.82 1.51E-03 

Ccdc106 0.82 6.03E-03 

Heph 0.82 1.73E-02 

Tceal5 0.82 3.95E-02 

Igfbp4 0.83 1.51E-03 

Apol9b 0.83 3.86E-03 

Mir22,Mir22hg,Tlcd2 0.83 6.03E-03 

Cped1 0.83 6.03E-03 

Pdgfrl 0.83 2.72E-02 

Rgs4 0.84 1.51E-03 

Tbx2 0.84 1.51E-03 

Tmem53 0.84 3.33E-02 

Lypd6 0.84 4.36E-02 

Ralgds 0.85 1.51E-03 

Camk1d 0.85 1.51E-03 

Bpgm 0.85 1.51E-03 

Fam117a 0.85 1.48E-02 

Fbxo32 0.86 1.51E-03 

Col5a3 0.86 1.51E-03 

Atp10d 0.86 2.58E-02 

Cacna1g 0.87 1.51E-03 

Mxd4 0.87 1.51E-03 

Lrrn1 0.87 4.97E-02 

Ackr3 0.88 1.51E-03 

Serpinb2 0.88 1.51E-03 
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Sfrp2 0.88 1.51E-03 

Pappa 0.88 1.51E-03 

Abat 0.88 5.04E-03 

Lgi2 0.88 3.60E-02 

Rhof 0.88 4.29E-02 

Ccl5 0.89 1.51E-03 

Plcl2 0.89 1.51E-03 

Mfap2 0.89 1.51E-03 

Tuba8 0.89 1.51E-03 

Stard10 0.89 1.51E-03 

Arhgap18 0.89 2.72E-03 

Igfbp2 0.90 1.51E-03 

Lpin1 0.90 1.51E-03 

Sqle 0.90 1.51E-03 

Pgm5 0.90 3.86E-03 

Camk4 0.90 7.91E-03 

Atcay 0.90 1.24E-02 

Idi1 0.91 1.51E-03 

Nfatc4 0.91 1.51E-03 

Pcdh17 0.91 1.51E-03 

Wbscr27 0.91 7.91E-03 

Dact1 0.92 1.51E-03 

C1qtnf6 0.92 1.51E-03 

Ociad2 0.92 1.51E-03 

Mgp 0.92 1.51E-03 

Homer2 0.92 1.51E-03 

Htra3 0.92 2.44E-02 

Gstt1 0.92 2.58E-02 

Arap1 0.93 1.51E-03 

Hspa1a,Hspa1b 0.94 1.51E-03 

Acss2 0.94 1.51E-03 

Tmsb15b1,Tmsb15b2,Tmsb15l 0.94 4.79E-02 

H19,Mir675 0.95 1.51E-03 

Erdr1 0.95 1.51E-03 

Lama4 0.96 1.51E-03 

Rgcc 0.97 3.86E-03 

Wnt16 0.97 5.04E-03 

Cpxm1 0.98 1.51E-03 

Nkd1 0.98 2.72E-03 

Sema6b 0.98 3.86E-03 

Efemp1 0.99 1.51E-03 

Irf1 0.99 1.51E-03 

Serpina3f,Serpina3g,Serpina3h 0.99 1.51E-03 

Hmgcs1 0.99 1.51E-03 

Cdhr1 0.99 1.51E-03 

Stmn2 0.99 1.51E-03 

Car5b 0.99 1.51E-03 

Zfp423 0.99 2.02E-02 

Tmem26 0.99 2.10E-02 

Ogn 0.99 2.65E-02 

Msx1os 1.00 1.51E-03 

Lmcd1 1.00 1.51E-03 

Scd3 1.00 3.86E-03 
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Pacrg 1.00 1.80E-02 

Itga4 1.01 1.51E-03 

Mir5625,Slc35f6 1.01 1.51E-03 

Nupr1 1.01 1.51E-03 

Mt2 1.01 1.51E-03 

Plcb1 1.01 1.48E-02 

Rtn4rl2 1.01 2.85E-02 

Hapln4 1.01 3.03E-02 

Gng7 1.02 1.51E-03 

Nkd2 1.02 1.51E-03 

Hs3st1 1.02 1.51E-03 

Sgsm1 1.02 1.51E-03 

A4galt 1.02 2.78E-02 

Aldh1l2 1.03 1.51E-03 

Mcpt8 1.03 1.51E-03 

Grem1 1.03 1.51E-03 

Ppargc1a 1.03 1.51E-03 

Bace2 1.03 6.03E-03 

Clstn3 1.03 3.65E-02 

Hmcn1 1.04 1.51E-03 

Kank4 1.04 1.16E-02 

Vnn1 1.04 2.16E-02 

Eva1c 1.05 7.00E-03 

Cst6 1.06 1.51E-03 

Pde7b 1.06 9.82E-03 

Map1a 1.07 1.51E-03 

Sprr1a 1.07 1.51E-03 

Penk 1.07 1.51E-03 

Galnt16 1.07 2.72E-03 

Rgs6 1.07 9.82E-03 

Pax3 1.08 1.51E-03 

Efs 1.08 1.51E-03 

Rtp4 1.08 1.51E-03 

Slc6a12 1.08 7.91E-03 

Ifit1 1.09 1.51E-03 

Ephx1 1.10 1.51E-03 

Ccl2 1.10 1.51E-03 

Oasl2 1.10 1.51E-03 

Gprasp2 1.10 3.20E-02 

Il1rn 1.11 1.51E-03 

Sstr4 1.11 1.51E-03 

Mir7025,Pdgfra 1.11 1.51E-03 

Gas2 1.11 1.51E-03 

Dpp4 1.11 3.86E-03 

Emilin2 1.12 1.51E-03 

Fam180a 1.13 1.51E-03 

Slc7a3 1.13 1.51E-03 

Enpp3 1.13 2.16E-02 

Btn1a1 1.13 2.72E-02 

Stc1 1.14 1.51E-03 

Mab21l2 1.14 1.51E-03 

Angpt1 1.14 2.85E-02 

Gas1 1.16 1.51E-03 
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Card10 1.16 1.51E-03 

C3 1.17 2.72E-03 

Sv2c 1.17 6.03E-03 

Efna1 1.18 3.86E-03 

Ptgs1 1.20 1.51E-03 

Plb1 1.20 1.48E-02 

Igfbp3 1.21 1.51E-03 

Plat 1.21 1.51E-03 

Fxyd6 1.21 1.51E-03 

Ppl 1.22 1.51E-03 

Mgst1 1.22 1.51E-03 

Tmem35 1.22 1.51E-03 

Shox2 1.23 1.51E-03 

Bcl3 1.23 1.51E-03 

Myo16 1.23 1.51E-03 

Hmx3 1.24 9.82E-03 

Gria1 1.25 1.51E-03 

Wnt9a 1.25 1.51E-03 

C1qtnf1 1.25 1.51E-03 

C1s1 1.25 1.51E-03 

Crnde 1.25 3.86E-03 

Fgf18 1.25 2.02E-02 

Tmem179 1.25 2.85E-02 

Agbl3 1.25 4.29E-02 

Nrep 1.26 1.51E-03 

Doc2b 1.26 2.31E-02 

Spock3 1.27 1.51E-03 

Col3a1 1.28 1.51E-03 

Gsta4 1.28 1.51E-03 

Sparcl1 1.28 4.97E-02 

Tmem119 1.29 1.51E-03 

Snca 1.29 1.51E-03 

Kcnj2 1.30 1.51E-03 

Pdlim4 1.31 1.51E-03 

Tmem108 1.31 1.51E-03 

C1rl 1.31 9.82E-03 

Acpp 1.31 1.95E-02 

Drc1 1.31 2.72E-02 

Hspb7 1.31 4.55E-02 

Gsc 1.34 1.51E-03 

Prss12 1.34 1.51E-03 

Spp1 1.35 1.51E-03 

Axin2 1.36 1.51E-03 

Capn6 1.36 1.51E-03 

Hist1h3d 1.37 2.72E-03 

Sybu 1.38 2.16E-02 

Mst1r 1.38 3.03E-02 

Fndc1 1.39 1.51E-03 

Tenm4 1.39 1.51E-03 

Nkain4 1.39 1.24E-02 

Fam13c 1.39 2.72E-02 

Mmp10 1.40 1.51E-03 

Cygb 1.41 3.26E-02 
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Cxcl1 1.41 3.90E-02 

Afap1l2 1.42 1.51E-03 

Mmp9 1.42 1.51E-03 

Prph 1.43 1.51E-03 

Tgfbi 1.44 1.51E-03 

Adamts8 1.44 7.00E-03 

Fhod3 1.44 2.24E-02 

Dnm1 1.45 1.51E-03 

Ifi44 1.45 1.51E-03 

C130074G19Rik 1.45 1.55E-02 

Notch3 1.46 1.51E-03 

Prelp 1.47 1.51E-03 

Tm4sf4 1.47 1.16E-02 

Prss35 1.48 1.51E-03 

Fap 1.49 1.51E-03 

Rasl10b 1.50 1.51E-03 

Fam189a2 1.50 4.79E-02 

Arsi 1.51 2.38E-02 

Ahrr 1.52 1.51E-03 

Rarb 1.52 1.51E-03 

Glrb 1.52 1.51E-03 

Il33 1.52 6.03E-03 

Tbx5 1.53 1.51E-03 

Lgi3 1.53 7.91E-03 

Serping1 1.54 1.51E-03 

Crabp2,Isg20l2 1.54 1.51E-03 

Ptx3 1.55 1.51E-03 

Muc1 1.55 2.72E-03 

AI606473 1.56 1.51E-03 

AW551984 1.58 1.51E-03 

Mab21l1 1.58 2.38E-02 

Igfbp5 1.61 1.51E-03 

Gna14 1.61 7.00E-03 

Zbp1 1.63 4.08E-02 

Eln 1.64 1.51E-03 

Serpinb1a 1.66 3.86E-03 

Wnt10a 1.66 2.38E-02 

Gfra2 1.70 1.51E-03 

Ly6a 1.70 1.51E-03 

Anxa8 1.71 1.51E-03 

Enox1 1.71 8.90E-03 

Lhx8 1.73 1.51E-03 

Dcn 1.74 1.51E-03 

Hopx 1.74 1.16E-02 

Dkk3 1.77 1.51E-03 

Cd34 1.79 1.51E-03 

Gdf10 1.79 1.51E-03 

Osr2 1.80 1.51E-03 

LOC102636514 1.82 1.51E-03 

Kcnip1 1.83 1.51E-03 

Ptn 1.84 1.51E-03 

Tnfsf18 1.85 1.51E-03 

Itgbl1 1.85 1.51E-03 
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Tspan11 1.86 1.51E-03 

Vat1l 1.87 1.51E-03 

Ly6c2 1.90 2.72E-03 

Wisp2 1.92 1.51E-03 

Sod3 1.97 1.51E-03 

Casp4 1.99 1.51E-03 

Ptgfr 2.02 1.51E-03 

Rab40b 2.02 2.44E-02 

Cpxm2 2.04 1.51E-03 

Eda2r 2.04 1.24E-02 

Medag 2.05 1.51E-03 

Icam1 2.05 1.51E-03 

Barx1 2.06 1.51E-03 

Pamr1 2.06 1.51E-03 

Gdf5 2.06 2.72E-03 

Gdf7 2.08 1.51E-03 

Lgr5 2.08 2.72E-03 

Ly6c1 2.12 1.51E-03 

Akr1c18 2.15 1.51E-03 

Mmp3 2.16 1.51E-03 

Gda 2.18 1.51E-03 

Dpep1 2.18 1.51E-03 

Aqp5 2.19 1.51E-03 

Dlx5 2.20 1.51E-03 

Gpr50 2.27 1.51E-03 

Aspn 2.29 1.51E-03 

Podn 2.33 8.90E-03 

B4galnt2 2.40 9.82E-03 

Ccdc3 2.43 1.51E-03 

Mrgprf 2.43 1.51E-03 

Calcb 2.44 3.95E-02 

Lum 2.47 1.51E-03 

Gabra3 2.47 6.03E-03 

Tac1 2.62 1.51E-03 

Faim2 2.68 3.86E-03 

Fndc5 2.69 2.24E-02 

Dlx6 3.05 3.86E-03 

Stra6 3.17 1.51E-03 
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RAD51D AND RNF138 EXPRESSION CONSTRUCTS 
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Table C.1. Prokaryotic expression constructs. 

 

Construct 

(pUC19 vector) 
Amino Acid Substitutions Cloning Site Resistance 

RAD51D-WT Residues 4 – 329 KpnI, BamHI Ampicillin 

RAD51D-K24R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K26R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K42R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K48R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K76R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K91R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K159R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K201R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K235R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K261R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K298R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K327R 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K0 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K298 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RAD51D-K235K298 DoubleLys 
Residues 4 – 329, 

mutant 
KpnI, BamHI Ampicillin 

RNF138-A236G 
Residues 1 – 246, 

mutant 
KpnI, BamHI Ampicillin 

RNF138-S240A 
Residues 1 -246, 

mutant 
KpnI, BamHI Ampicillin 

RNF138-S240Q 
Residues 1 – 246, 

mutant 
KpnI, BamHI Ampicillin 

RNF138-Deletion 
Residues 1 – 246, 

mutant 
KpnI, BamHI Ampicillin 

RNF138-A236GS240A 
Residues 1 – 246, 

mutant 
KpnI, BamHI Ampicillin 
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Table C.2. Eukaryotic expression constructs.  

 

Construct 

(pcDNA3.1 vector) 
Amino Acid Substitutions 

Cloning 

Site 
Resistance 

Myc-RAD51D-WT Residues 4 – 329 
KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K24R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K26R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K42R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K48R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K76R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K91R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K159R 
Residues 4 – 329, 

K159R 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K201R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K235R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K261R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K298R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K327R 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K0 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K298 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

HA-RAD51D-WT Residues 4 – 329 
KpnI, 

BamHI 

Ampicillin 

Hygromycin 

HA-RAD51D-K0 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-Cterm 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-Nterm 
Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K235RK298R 

DoubleArg 

Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 

Myc-RAD51D-K235K298 

DoubleLys 

Residues 4 – 329, 

mutant 

KpnI, 

BamHI 

Ampicillin 

Hygromycin 
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Table C.3. Yeast expression constructs. 

 

Construct Amino Acid Substitutions 
Cloning 

Site 
Resistance 

Drop Out 

Supplement 

pGADT7-RAD51D-

K24R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K26R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K42R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K48R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K76R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K91R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K159R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K201R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K235R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K261R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K298R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGADT7-RAD51D-

K327R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Ampicillin -Leu 

pGBKT7-RAD51D-

K76R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Kanamycin -Trp 

pGBKT7-RAD51D-

K201R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Kanamycin -Trp 

pGBKT7-RAD51D-

K235R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Kanamycin -Trp 

pGBKT7-RAD51D-

K298R 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Kanamycin -Trp 

pGBKT7-RAD51D-

K0 

Residues 4 – 329, 

mutant 

EcoRI, 

BamHI 
Kanamycin -Trp 
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Table C.4. Fluorescent expression constructs.  

 

Construct 

(pEGFP-C1 vector) 
Amino Acid Substitutions Cloning Site Resistance 

EGFP-RAD51D-WT 
Residues 4 – 329, 

EGFP C-terminal fusion 
KpnI, BamHI Kanamycin 

EGFP-RAD51D-K201R 

Residues 4 – 329, 

mutant, 

EGFP C-terminal fusion 

KpnI, BamHI Kanamycin 

EGFP-RAD51D-K235R 

Residues 4 – 329, 

mutant, 

EGFP C-terminal fusion 

KpnI, BamHI Kanamycin 

EGFP-RAD51D-K298R 

Residues 4 – 329, 

mutant, 

EGFP C-terminal fusion 

KpnI, BamHI Kanamycin 

EGFP-RAD51D-K0 

Residues 4 – 329, 

Mutant, 

EGFP C-terminal fusion 

KpnI, BamHI Kanamycin 

EGFP-RAD51D-Cpep-WT 
Residues 225 – 329, 

EGFP C-terminal fusion 
KpnI, BamHI Kanamycin 

EGFP-RAD51D-Cpep-K235R 

Residues 225 – 329, 

mutant, 

EGFP C-terminal fusion 

KpnI, BamHI Kanamycin 

EGFP-RAD51D-Cpep-K298R 

Residues 225 – 329, 

mutant, 

EGFP C-terminal fusion 

KpnI, BamHI Kanamycin 

EGFP-RAD51D-Cpep-K0 

Residues 225 – 329, 

mutant, 

EGFP C-terminal fusion 

KpnI, BamHI Kanamycin 

EGFP-RAD51D-Cpep-K235 Only 

Residues 225 – 329, 

mutant, 

EGFP C-terminal fusion 

KpnI, BamHI Kanamycin 

EGFP-RAD51D-Cpep-K298 Only 

Residues 225 – 329, 

mutant, 

EGFP C-terminal fusion 

KpnI, BamHI Kanamycin 

EGFP-RAD51D-Cpep-DoubleLys 

Residues 225 – 329, 

mutant, 

EGFP C-terminal fusion 

KpnI, BamHI Kanamycin 
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APPENDIX D 

 PERMISSION TO REPRINT DATA IN CHAPTER 3 
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APPENDIX E 

PERMISSION TO REPRINT DATA IN CHAPTER 5 
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